首页|智能移动终端协同下脑卒中康复行为识别方法

智能移动终端协同下脑卒中康复行为识别方法

扫码查看
针对脑卒中患者的智能化自我康复训练行为识别率低、感知易用性较差等问题,提出了一种融合卷积与长短期记忆神经网络的脑卒中康复运动识别方法.首先,利用卷积神经网络模型得到数据局部空间的特征信息,再利用长短期记忆神经网络模型获取数据局部长时间相关性的特征信息.将二者融合,从智能移动终端的传感器数据中分析出精准的康复训练肢体变化的时间和空间相关性特征,实现对脑卒中康复行为分类.实验分析表明,提出的方法识别患者姿态行为的精度高于传统方法.在康复训练方面具有一定的应用价值.
Identification method of stroke rehabilitation behavior in collaboration with smart mobile terminals
The stroke rehabilitation movement identification method that incorporates convolutional neural networks and long and short-term memory neural networks is proposed to address low recognition rate,poor perceived ease of use of intelligent self-rehabilitation behaviors in stroke patients.Firstly,the convolutional neural network model is used to obtain feature information about the data local space,and the long and short-term memory neural network model is further used to obtain feature information about the data local long-term correlation.The two fuse sensor data from the sensor data of the smart mobile terminal to obtain precise information on the temporal and spatial the characteristics related to limb changes in rehabilitation training.Finally,the behavioral classification of stroke rehabilitation is achieved.Experiment analysis shows that the proposed method has higher accuracy than traditional methods in identifying patient behav-iors.It has some application value in rehabilitation training.

mobile terminalConvolutional Neural NetworkShort and Long-term Memory Networkstroke rehabilitationbehavioral identification

张文晶、马文辉

展开 >

齐齐哈尔医学院,黑龙江齐齐哈尔 161006

移动终端 卷积神经网络 长短期记忆网络 脑卒中康复 行为识别

黑龙江省教育厅基本科研业务费基础研究项目

2018-KYYWF-0104

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(1)
  • 8