首页|基于卷积神经网络的智能化考试系统设计

基于卷积神经网络的智能化考试系统设计

扫码查看
目前各个地区的教育考试信息系统较多,不利于教育的智能化改革和发展.针对上述问题,研究设计一种智能化考试系统.基于卷积神经网络(CNN)设计关联算法,对各个教育考试信息系统的多元信息进行关联;结合CNN和长短记忆人工神经网络(LSTM)设计粒度计算算法,以对考试数据进行多粒度特征融合.实验结果表明,研究提出的智能化考试系统在字粒度、词粒度和多粒度特征融合三个层面的准确率分别为90.2%、91.4%和93.7%,能够提高考试信息系统的利用率,为教育信息化发展提供数据支持.
Design of intelligent examination system based on convolutional neural network
At present,too many educational examination information systems in various regions is not con-ducive to the intelligent reform and development of education.To solve the above problems,an intelligent examination system is designed.An association algorithm based on convolutional neural networks(CNN)is designed to associate the multiple information of each educational examination information system,and com-bined with CNN and the long short-term memory artificial neural network(LSTM),a granularity calculation algorithm is designed to fuse multi granularity features of examination data.The experiment results show that the accuracy of the intelligent examination system in the three levels of word granularity,word granularity and multi granularity feature fusion is 90.2%,91.4%and 93.7%respectively,which can improve the u-tilization rate of the information of the examination information system and provide data support for the infor-mation development of local education.

CNNLSTMdata fusionmulti granularityexamination system

齐润泉

展开 >

山东省泰安市教育局,山东泰安 271000

CNN LSTM 数据融合 多粒度 考试系统

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(1)
  • 11