首页|基于弱监督的口腔鳞状细胞癌病理图像分割

基于弱监督的口腔鳞状细胞癌病理图像分割

扫码查看
考虑到口腔鳞状细胞癌病理图像的超高分辨率,文中提出用简单的曲线粗略勾画三类前景区域,使得前景区域标签是包含背景区域的粗标签,仅耗费专业精细标注1/6的时间。文中利用粗标签中前景区域含噪声,但背景区域都是干净标签这一事实,通过多个背景模板滤除误标的前景像素,实现对前景部分的精细化分割。具体地,文中提出基于背景相似度感知的平均教师模型(BS-MT),通过抽取高度多样性和鲁棒性的背景模板,指导学生网络利用模板滤波滤除背景像素而生成高质量的前景标签。在自建的OSCC-CA数据集,该方法的mIoU比U-Net和其他弱监督方法分别高出2。5%和1。1%以上。
Weakly-Supervised pathological image segmentation for oral squamous cell carcinoma
Considering the high resolution of Oral Squamous Cell Carcinoma(OSCC)pathological image,we propose to simply draw curves to cover up all foreground regions,generating coarse labels with back-ground around involved in.The overall time of coarse annotation is about one sixth the time of professional precise annotation.Considering the fact that background labels are clean and the foreground labels are noisy,multiple background regions are used to establish templates to filter out the mislabelled foreground pixels and refine the foreground segments.Specifically,Background Similarity-aware Mean Teacher(BS-MT)is advanced,which explores background representations with high diversity and robustness and guides the student model to generate high-quality foreground labels via background pixel filtering.On the privately-es-tablished OSCC-CA dataset,our method significantly outperforms U-Net by 2.5%and other widely-used weakly-supervised methods by more than 1.1%in terms of mIoU.

weakly-supervised segmentationpathological image segmentationbackground similarity-a-ware mean teacher

李达义、孙晶晶、林天成、李江、徐奕

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

上海市第九人民医院,上海 200011

弱监督分割 病理图像分割 背景相似度感知平均教师

国家自然科学基金面上项目

62171282

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(2)
  • 10