首页|基于FCM算法的中小型转动设备故障检测研究

基于FCM算法的中小型转动设备故障检测研究

扫码查看
针对现有算法在中小型转动设备故障检测中存在的收敛速度慢、故障识别率低等问题,提出一种基于FCM融合算法的故障检测方案研究。对原始故障集做降噪处理,基于模糊熵值理论在多尺度条件下提取故障向量的隶属度;利用GA算法优化FCM算法的迭代性能和收敛性能,分别更新故障特征向量模糊隶属度矩阵和聚类中心矩阵,以达到改善聚类精度,提高故障识别率的目的。实验结果显示,该算法在不同的聚类中心数量及故障类别的条件下,能够获得更好的聚类效果和更高的收敛速度,训练集合和测试集的平均故障识别分别可以达到99。19%和98。23%。
Research on fault detection of small and medium-sized rotating equipment based on FCM algorithm
To solve the problems of slow convergence speed and low fault recognition rate in the fault detec-tion of small and medium-sized rotating equipment by existing algorithms,a fault detection scheme based on FCM fusion algorithm is proposed.The original fault set is denoised,and the membership degree of the fault vector is extracted under the multi-scale condition based on the fuzzy entropy value theory.The itera-tive performance and convergence performance of the FCM algorithm are optimized by the GA algorithm,and the fuzzy membership degree matrix and clustering performance of the fault eigenvector are updated re-spectively,all of which are used to improve the clustering accuracy and the fault identification rate.The ex-periment results show that the algorithm can obtain better clustering effect and higher convergence speed un-der the condition of different number of cluster centers and fault types,and the average fault identification of training set and test set can reach 99.19%and 98.23%respectively.

FCM algorithmrotating equipmentiterative performanceGA algorithmfuzzy membership

苗俊田、刘冬冬、鹿德台、赵博

展开 >

中国石油大学(华东)石油工业训练中心,山东青岛 266400

FCM算法 转动设备 迭代性能 GA算法 模糊隶属度

国家自然科学基金项目

51904018

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(2)
  • 11