首页|融合图神经网络与长短期偏好的序列推荐算法

融合图神经网络与长短期偏好的序列推荐算法

扫码查看
针对序列推荐在捕获用户动态偏好方面存在明显不足,而且难以捕获用户复杂的长期依赖关系等问题。提出了一种融合图神经网络与长短期偏好的序列推荐算法。算法主要包含短期偏好学习和长期偏好学习。首先基于图神经网络进行短期偏好学习,图神经网络具有强大的图数据拟合能力,用图神经网络捕获用户兴趣点的联系并准确生成短期偏好表示。历史长期偏好具有全局性,波动较小,利用双向LSTM进行长期偏好兴趣学习,获得用户长期偏好表示。实验结果表明,融合图神经网络与长短期偏好的序列推荐算法显著优于其他先进的序列推荐方法。
Sequence recommendation algorithm based on Graph Neural Network and long short term prefer-ence
To solve the problems that sequence recommendation has obvious shortcomings in capturing us-ers'dynamic preferences,it is difficult to capture users'complex long-term dependencies.Therefore,a sequential recommendation algorithm integrating graph neural network and long-term and short-term prefer-ence is proposed.The algorithm mainly includes short-term preference learning and long-term preference learning.Firstly,the short-term preference learning is carried out based on the graph neural network.The graph neural network has a strong ability of fitting graph data.The graph neural network is used to capture the connection of the user's interest points and accurately generate the short-term preference representa-tion.The historical long-term preference is global and has less fluctuation.Bidirectional LSTM is used for long-term preference interest learning to obtain the user's long-term preference representation.The experi-ment results show that the sequence recommendation algorithm integrating graph neural network and long-term and short-term preference is significantly better than other advanced sequence recommendation methods.

recommendation algorithmgraph neural networksequence recommendation

邬硕、汪海涛、姜瑛、陈星

展开 >

昆明理工大学信息工程与自动化学院,昆明 650500

推荐算法 图神经网络 序列推荐

国家自然科学基金资助项目

61462049

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(2)
  • 17