首页|盆式绝缘子闪络的典型异物红外图像识别算法

盆式绝缘子闪络的典型异物红外图像识别算法

扫码查看
分割典型异物像素区域时,难以选取最佳分割阈值,导致识别出的典型异物定位精度较差,由此,提出盆式绝缘子闪络的典型异物红外图像识别算法.去除红外图像脉冲噪声、高斯噪声,通过边缘锐化和灰度均匀化,划分图像目标和背景,利用遗传算法搜索各类图像灰度方差和最大值,将最大值对应的分割阈值作为最佳阈值,分割典型异物像素区域,构建改进BP神经网络,提取分割图像的异物类别特征,迭代训练后,识别周围典型异物类别.实验结果表明,该方法减小定了位边界框与异物矩形框的间距,提高了异物目标定位精度和识别效率.
Infrared image recognition algorithm of typical foreign matters in basin insulator flashover
When segmenting the pixel area of typical foreign matter,it is difficult to select the best segmen-tation threshold,resulting in poor positioning accuracy of the identified typical foreign matter.Therefore,an infrared image recognition algorithm of typical foreign matter for basin insulator flashover is proposed.The impulse noise and Gaussian noise of infrared image are removed,and through edge sharpening and gray homogenization,the image target and background can be divided.Searching the gray variance and maximum value of various images by genetic algorithm and taking the segmentation threshold corresponding to the maxi-mum value as the best threshold,and the typical foreign object pixel areas are segmented to construct an im-proved BP neural network.The foreign object category characteristics of the segmented image are extract and the surrounding typical foreign object categories are identified after iterative training.The experiment results show that this method reduces the distance between the positioning boundary frame and the foreign object rec-tangular frame,and improves the foreign object target positioning accuracy and recognition efficiency.

insulator flashovertypical foreign bodyinfrared imagetarget recognitionimage segmenta-tion

徐嘉臻、孙国立、李要锋、范国涛、李帅杰、宋辉军

展开 >

河南平芝高压开关有限公司,河南平顶山 467000

绝缘子闪络 典型异物 红外图像 目标识别 图像分割

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(2)
  • 18