首页|基于改进PageRank算法的超网络关键节点识别

基于改进PageRank算法的超网络关键节点识别

扫码查看
针对超网络中关键节点识别算法识别分辨率不足的问题,将在复杂网络领域中利用邻接节点信息获得更好效果的PageRank算法改进并运用到超网络中进行关键节点识别,并实现了超图从关联矩阵到邻接矩阵的转换算法,降低了计算复杂度。文中在真实网络中与超图的超度、节点度、邻接信息熵等指标进行对比,实验结果证明了文中算法能识别出关键节点并且具有较高的分辨率。
Identification of key nodes in super-network based on improved PageRank
To solve the problem of insufficient resolution of the recognition algorithm of key nodes in super-network,the PageRank algorithm which uses adjacency node information to get better effect in the field of complex networks is improved and applied to the super-network to identify the key node.Besides,the hy-pergraph from the incidence matrix to the adjacency matrix transformation algorithm is realized,which re-duces the computational complexity.In this paper,we compare with the hypergraph super degree,node de-gree and adjacent information entropy in the real network.The experiment results prove that the proposed algorithm can identify the key nodes and has a better resolution.

hypergraphsuper-networkcomplex networkkey nodesPagaRank algorithm

史峰豪、王欣、潘文林

展开 >

云南民族大学数学与计算机科学学院,昆明 650500

超图 超网络 复杂网络 关键节点 PageRank算法

云南省教育厅科研项目云南民族大学数学与计算机科学学院研究生科研项目

2022J1737SJXY-2021-020

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(3)
  • 11