首页|采用稀疏卷积的级联双轮车头盔目标检测算法

采用稀疏卷积的级联双轮车头盔目标检测算法

扫码查看
随着快递及外卖业的兴起,以电动车和摩托车为代表的双轮车数量激增,交通事故频发。由于双轮车数量庞大,管理将耗费大量警力,而该研究能够大大释放警力。针对目标检测模型中高分辨率特征层计算耗时的问题,提出了采用稀疏卷积的级联双轮车头盔目标检测算法,有效提升模型性能,速度提高了33。3%。此外针对行人以及自行车驾乘人员带来的未戴头盔误判问题,采用多尺度空洞卷积,通过引入上下文信息,可以有效减少此类误判,精度提升2。2%。最后标注并开源了交通道路场景下的双轮车头盔数据集TWHD,以验证算法性能。
Cascade two wheeler helmet detection algorithm using sparse convolution
With the rise of express delivery industry,the number of two wheeler represented by electric ve-hicles and motorcycles has increased sharply,and traffic accidents occur frequently.Due to the large num-ber of two wheeled vehicles,the management will consume a lot of police force,and this study can greatly release the police force.To solve the time-consuming problem of high-resolution feature layer calculation in the object detection algorithm,this paper proposes a Cascade two wheeler helmet detection algorithm using sparse convolution,which improves the speed by 33.3%.In addition,for the misjudgment of pedestrians and cyclists without helmets,multi-scale dilated convolution is adopted.By introducing context informa-tion,such misjudgment can be effectively reduced and the accuracy can be improved by 2.2%.Finally,we annotate and open source TWHD dataset to verify the performance of the algorithm.

deep learningtwo wheeler helmet detectionsmall object detectionsparse convolutionmulti-scale dilated convolution

李丹峰

展开 >

杭州电子科技大学计算机学院,杭州 310018

深度学习 双轮车头盔目标检测 小目标检测 稀疏卷积 多尺度空洞卷积

浙江省大学生科技创新活动计划(新苗人才计划)

2021R407026

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(3)
  • 17