首页|基于卷积神经网络的肺炎识别与研究

基于卷积神经网络的肺炎识别与研究

扫码查看
为了减少实验样本和数据集增量选取在训练过程中的过拟合现象,提高肺炎识别的准确率,提出一种拟合构建的卷积神经网络与模型识别肺炎的算法。该算法首先对图像采用图像阈值分割技术进行预处理,再将卷积神经网络和反向传播算法结合,对卷积神经网络进行优化,使其提取到的特征更加趋近于抽象并且表达能力也更强,在提高收敛度的同时可以避免过拟合现象的产生,经临床数据实验证明,该方案较现有普遍研究的分类算法在精确度和识别率方面都有较大提高,且提升了整体交互处理不良数据反应,一定程度上完善了肺炎判别方法。
Research on pneumonia recognition method based on convolutional neural network
In order to reduce the overfitting phenomenon of standard sample and data set selection in the training process and improve the accuracy of pneumonia recognition,an algorithm for pneumonia recognition by fitting constructed convolutional neural network with model is proposed.The algorithm firstly preprocess-es the image using image threshold segmentation technique,then combines the convolutional neural network and back propagation algorithm to optimize the convolutional neural network so that the extracted features tend to be more abstract and more expressive,which can avoid the overfitting phenomenon while improving the convergence degree.Besides,the algorithm is proved by clinical data experiments that the scheme is more accurate than the existing commonly studied classification algorithms.And,clinical data shows that the scheme has improved the accuracy and recognition rate compared with the commonly studied classifica-tion algorithms,and has improved the overall interactive processing of poor data response,which has pefect the pneumonia discrimination problem to a certain extent.

convolutional neural networksdeep learningback propagationimage processing

黄承宁、李莉、朱玉全、黄倩

展开 >

南京工业大学浦江学院,南京 211222

江苏大学,江苏 镇江 212013

卷积神经网络 深度学习 反向传播 图像处理

国家自然科学基金江苏省高等学校自然科学研究项目

6170222918KJD520001

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(3)
  • 13