信息技术2024,Issue(3) :63-69.DOI:10.13274/j.cnki.hdzj.2024.03.010

基于卷积神经网络的肺炎识别与研究

Research on pneumonia recognition method based on convolutional neural network

黄承宁 李莉 朱玉全 黄倩
信息技术2024,Issue(3) :63-69.DOI:10.13274/j.cnki.hdzj.2024.03.010

基于卷积神经网络的肺炎识别与研究

Research on pneumonia recognition method based on convolutional neural network

黄承宁 1李莉 1朱玉全 2黄倩1
扫码查看

作者信息

  • 1. 南京工业大学浦江学院,南京 211222
  • 2. 江苏大学,江苏 镇江 212013
  • 折叠

摘要

为了减少实验样本和数据集增量选取在训练过程中的过拟合现象,提高肺炎识别的准确率,提出一种拟合构建的卷积神经网络与模型识别肺炎的算法.该算法首先对图像采用图像阈值分割技术进行预处理,再将卷积神经网络和反向传播算法结合,对卷积神经网络进行优化,使其提取到的特征更加趋近于抽象并且表达能力也更强,在提高收敛度的同时可以避免过拟合现象的产生,经临床数据实验证明,该方案较现有普遍研究的分类算法在精确度和识别率方面都有较大提高,且提升了整体交互处理不良数据反应,一定程度上完善了肺炎判别方法.

Abstract

In order to reduce the overfitting phenomenon of standard sample and data set selection in the training process and improve the accuracy of pneumonia recognition,an algorithm for pneumonia recognition by fitting constructed convolutional neural network with model is proposed.The algorithm firstly preprocess-es the image using image threshold segmentation technique,then combines the convolutional neural network and back propagation algorithm to optimize the convolutional neural network so that the extracted features tend to be more abstract and more expressive,which can avoid the overfitting phenomenon while improving the convergence degree.Besides,the algorithm is proved by clinical data experiments that the scheme is more accurate than the existing commonly studied classification algorithms.And,clinical data shows that the scheme has improved the accuracy and recognition rate compared with the commonly studied classifica-tion algorithms,and has improved the overall interactive processing of poor data response,which has pefect the pneumonia discrimination problem to a certain extent.

关键词

卷积神经网络/深度学习/反向传播/图像处理

Key words

convolutional neural networks/deep learning/back propagation/image processing

引用本文复制引用

基金项目

国家自然科学基金(61702229)

江苏省高等学校自然科学研究项目(18KJD520001)

出版年

2024
信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
参考文献量13
段落导航相关论文