首页|基于改进CNN的GIS局部放电故障诊断

基于改进CNN的GIS局部放电故障诊断

扫码查看
深度神经网络(DNN)广泛用于使用局部放电(PD)的故障分类,以评估各种电气设备的绝缘水平,但对于未训练的PD故障数据存在误报风险.基于此,提出了一种基于改进CNN的深度集成模型.首先采用特高频传感器(UHF)采集现场七种GIS绝缘缺陷故障PD信号,形成PRPD谱图并进行分析;其次将采集的数据导入模型中进行不确定性估计,确定模型的置信度值和阈值;再次对CNN深度集成模型的规模对分类性能的影响展开研究.实验结果表明,所提模型对局部放电未知故障具有较好的检测性能,具有一定的工程实践价值.
GIS partial discharge fault diagnosis based on improved CNN
Deep Neural Networks(DNN)is widely used for fault classification using Partial Discharges(PD)to assess the insulation level of various electrical equipment,but there is a risk of false positives for untrained PD fault data.Based on this,a deep ensemble model based on improved CNN is proposed.First-ly,UHF sensors are used to collect PD signals for seven kinds of GIS insulation defect faults in the field,and PRPD spectra are formed and analyzed.Secondly,the collected data is imported into the model for un-certainty estimation and the confidence value and the threshold value of the model is determined.The influ-ence of the scale of the CNN deep ensemble model on the classification performance is studied again.The results show that the proposed model has good detection performance for unknown partial discharge faults ex-perimental,and has certain engineering practice value.

gas insulated switchgearfault diagnosispartial discharge detectionconvolutional neural net-worksdeep integration model

贾卫军、张涛、李智

展开 >

国网石家庄供电公司,石家庄 050000

华北电力大学电气与电子工程学院,河北 保定 071000

气体绝缘开关设备 故障诊断 局部放电检测 卷积神经网络 深度集成模型

中央高校基本科研业务费专项

517-77070

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(3)
  • 14