首页|基于GWO-LSTM的智能财务审计模型设计与应用

基于GWO-LSTM的智能财务审计模型设计与应用

扫码查看
由于目前审计过程复杂繁琐,审计智能化发展已成为大势所趋,为提高审计质量,文中在大数据背景下,为预测财务报表建立了基于审计意见的智能财务审计模型,为此提出了一种基于灰狼算法(GWO)和长短期记忆网络(LSTM)融合的审计意见预测模型.利用财务指标体系构建财务参数描述的有效审计意见,采用灰狼优化算法(GWO)结合自适应学习机制对LSTM模型的关键超参数进行优化搜索,通过这种方式对模型进行训练,从而得到训练好的预测模型.这一模型能够科学地预测未来的审计意见,从而提升审计数据分析的效率.
Design and application of an intelligent financial audit model based on GWO-LSTM
At present,the audit process is complex and cumbersome,and the development of intelligent au-dit has become a trend.In order to improve the quality of audit,this article establishes an intelligent finan-cial audit model based on audit opinions for predicting financial statements in the context of big data.Be-sides,a prediction model for audit opinions based on the fusion of Grey Wolf Algorithm(GWO)and Long Short Term Memory Network(LSTM)is proposed.Firstly,the financial indicator system is adopted to con-struct the effective audit opinions for describing financial parameters,and the Grey Wolf Optimization Algo-rithm(GWO)combined with adaptive learning mechanism are utilized to optimize and search for key hy-perparameters of the LSTM model.By using this method,the model is trained to obtain a well trained pre-dictive model,which can scientifically predict future audit opinions,thus improving the efficiency of audit data analysis.

security auditdeep learningGWO-LSTM

李海涛、张卓

展开 >

南京航空航天大学经济与管理学院,南京 210016

安全审计 深度学习 GWO-LSTM

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(3)
  • 9