首页|基于组合遗传算法的电力科技创新成果多agent集成仿真

基于组合遗传算法的电力科技创新成果多agent集成仿真

扫码查看
电力科技成果普遍交叉,为了降低集成电力科技创新成果耗时与能量损耗,研究基于组合遗传算法的电力科技创新成果多agent集成仿真.将底层数据库中电力科技创新资源经多种接口调配至关联库、综合评价以及专家评价三大agent模块,通过结合遗传算法与蚁群算法优点的组合遗传算法,优化解决多agent集成任务分配问题,实现电力科技创新成果高效集成.实验表明,该算法的寻优能力高、求解速度快;可规范化、结构化地集成电力科技创新成果信息;具有耗时少、能量损耗低优势.为科技创新和成果转化提供新思路.
Multi-agent integrated simulation of power science and technology innovation based on combined ge-netic algorithm
Since the results of the power science and technology are generally crossed,in order to reduce the time-consuming and energy loss of integrated power science and technology innovation achievements,the multi-agent integrated simulation of power science and technology innovation achievements based on combined genetic algorithm is studied.The power science and technology innovation resources in the under-lying database are allocated to the three agent modules of association database,comprehensive evaluation and expert evaluation through various interfaces.Through the combined genetic algorithm combining the ad-vantages of genetic algorithm and ant colony algorithm,the problem of multi-agent integrated task allocation is optimized to realize the efficient integration of power ccience and technology innovation achievements.Experiments show that the algorithm has high optimization ability and fast solution speed,which can in-tegrate the information of electric power scientific and technological innovation achievements in a planned and structured way,and has the advantages of less time-consuming and low energy loss,which could pro-vide new ideas for scientific and technological innovation and achievement transformation.

combined genetic algorithmpower technologymulti-agent integrated simulationtask allocation

张天毅、刘茹

展开 >

国网兰州供电公司,兰州 730000

组合遗传算法 电力科技 多agent集成仿真 任务分配

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(3)
  • 15