首页|基于计算机网络安全技术的态势感知防御方法

基于计算机网络安全技术的态势感知防御方法

扫码查看
针对传统计算机网络安全态势感知精度不高,感知数据的分析侦测在数据体量庞大的情况下难以保持误差数值的稳定,可视化装置数据处理速度缓慢等问题进行系统方案的设计.在硬件方面基于对于传感器和可视化模块进行改进;该研究在算法技术方面是基于回归算法模型相关的卷积神经网络算法和误差逆传播(error BackPropagation,BP)神经网络算法构建网络安全态势感知的数学模型.通过模拟仿真实验,该系统的威胁检测率能达到 96.67%,误警率只有 1.10%,且在长时间的工作下也能保持稳定.
Situation awareness defense method based on computer network security technology
Since the low accuracy of traditional computer network security situational awareness,it is diffi-cult to maintain the stability of error value in the analysis and detection of perceived data in the case of large data volume,and the data processing speed of visualization device is slow.Therefore,the system scheme is designed.In terms of hardware,the research is based on the improvement of sensors and visualization mod-ules,while in terms of algorithm technology,this research is based on the convolution neural network algo-rithm related to the regression algorithm model and Error BackPropagation neural network algorithm to build the mathematical model of network security situational awareness.Through simulation experiments,the threat detection rate of the system can reach 96.67%,the false alarm rate is only 1.10%,and it can re-main stable under long-time operation.

security situation detectionconvolution neural network algorithmBP neural network algo-rithmvisualizationsensor

韩鹏军、曹慧、曹文桥

展开 >

国家能源集团信息技术有限公司,北京 100010

安全态势检测 卷积神经网络算法 BP神经网络算法 可视化 传感器

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(3)
  • 11