首页|基于不平衡图像的河湖水质监测研究

基于不平衡图像的河湖水质监测研究

扫码查看
水质监测对于河湖生态建设有着重要意义,但传统河湖水质监测方法存在监测难度大、监测成本高等问题。为了使水质监测更为智能、方便,文中基于具有不平衡特点的河湖图像,通过代价敏感交叉熵函数方法改进了 VGG16卷积神经网络分析河湖图像进行水质监测,并与随机欠采样、图像增强等不平衡数据处理方法进行对比。经过大量实验后,结果显示文中将VGG16卷积神经网络与代价交叉熵函数结合方法的准确率、精准率、召回率与F1值均高于其他方法,分别可以达到0。91、0。92、0。91、0。92,证明该方法可以有效地对河湖不平衡图像进行水质分类。
Research on water quality monitoring of rivers and lakes based on unbalanced image
Water quality monitoring is of great significance to the ecological construction of rivers and lakes,but the traditional water quality monitoring methods of rivers and lakes have the problems of difficult monito-ring methods and high monitoring costs.In order to make water quality monitoring more intelligent and con-venient,this paper improves the VGG16 convolutional neural network to analyze river and lake images for water quality monitoring by cost-sensitive cross-entropy function method based on river and lake images with unbalanced characteristics,and compares it with unbalanced data processing methods such as random un-dersampling and image enhancement.After a large number of experiments,the results show that the accura-cy,precision,recall and F1 value of the method combining VGG16 convolutional neural network with cost cross entropy function are higher than other methods,which can reach 0.91,0.92,0.91 and 0.92,re-spectively.It is proved that this method can effectively classify the water quality of river and lake unbal-anced images.

water quality monitoringunbalanced data setcost sensitiveconvolutional neural networkVGG16

磨首屹、徐绪堪、王晓娇

展开 >

河海大学商学院,南京 211100

常州市工业大数据挖掘与知识管理重点实验室,江苏常州 213022

水质监测 不平衡数据集 代价敏感 卷积神经网络 VGG16

中央高校基本科研业务费专项河海大学项目

B220207038

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)