首页|基于联合注意力机制的多阶段去雨网络

基于联合注意力机制的多阶段去雨网络

扫码查看
为了提高雨天环境下拍摄的图像质量,提出了一个多阶段联合注意网络(MUANet)。该网络有三个阶段,在每个阶段的初始输入采用基于通道注意力和空间注意力的联合注意模块(UAB)进行处理,该模块可以检测通道内特征分布同时获取雨纹的空间信息。前两个阶段使用引入半实例归一化模块(HINB)的编码解码网络挖掘深层的上下文信息,精准定位雨纹在图像中的位置。最后阶段在前两个阶段生成的注意图引导下,对图像进行雨线纹理去除和背景细节的恢复。实验表明,MUANet在去雨效果和对图像背景细节的恢复上相较于现有方法有明显提高。
Multi-stage rain removal network based on union attention mechanism
In order to improve the quality of image shot in rainy environment,a Multi-stage Union Attention Network(MUANet)is proposed.The network has three stages.The initial input of each stage is processed the Union Attention Block(UAB)based on channel attention and spatial attention.UAB can detect the feature distribution in the channel and obtain the spatial information of rain patterns at the same time.In the first two stages,the encoding and decoding network with Half Instance Normalization Block(HINB)is used to mine the deep context information and accurately locate the position of rain texture in the image.In the last stage,with the attention map generated in the first two stages,the rain line texture is removed and the background details are restored.Experiments showed that MUANet exceeded than the existing methods in the performance of both rain removal and restoration of image background details.

multi-stage networkattention mechanismimage rain removalHalf Instance Normalizationencoding and decoding network

陈浩翰、王瑛、王勇

展开 >

广东工业大学计算机学院,广州 510006

多阶段网络 注意力机制 图像去雨 半实例归一化 编码解码网络

广东省重点领域研发计划

2021B0101420001

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)