首页|基于GRU的未来24小时高低温预报技术研究

基于GRU的未来24小时高低温预报技术研究

扫码查看
温度作为重要的气象要素,关乎民生和生产,其中最高温和最低温更是引人关注,但相关的研究却鲜有涉及.文中基于GRU模型提出了一种未来24小时高低温的AI预报算法,并针对数据缺失情况设计了 5种数据处理方法,利用实况和多种模式资料制作AI训练数据集,以过去72小时实况数据和模式未来24小时预报数据为输入.实验表明,该方法能够有效提高高低温的预报精度,最高温预报误差为1.59℃,最低温预报误差为1.19℃,预报精度高于EC模式和预报员的预报精度,尤其是最低温预报精度提升比较明显,对预报员具有较好的预报指导意义.
Research on high and low temperature forecast technology for the next 24 hours based on GRU
Temperature is an important meteorological element related to people's livelihood and produc-tion,and the highest and lowest temperature among them attract people's attention,but the relevant re-search is rather little.Based on GRU model,this paper proposes an AI prediction algorithm for high and low temperature in the next 24 hours,and five data processing methods are designed based on the missing data.AI training data sets are made using live and multiple mode data,taking the past 72 hours of live data and the forecast data of the next 24 hours as input.The experiment shows that this method can effectively reduce the prediction error of high and low temperatures.The prediction error of the highest temperature is 1.59°G,and the prediction error of the lowest temperature is 1.19℃.The prediction accuracy is higher than that of the EC model and the forecasters.In particular,the prediction accuracy of the lowest tempera-ture is significantly improved,which has a good guiding significance for the forecasters.

deep learningGRU modelartificial intelligencehigh and low temperature forecastdata processing

雷鸣、年飞翔、郭阳、勾志竟、姜罕盛

展开 >

天津市气象信息中心,天津 300074

深度学习 GRU模型 人工智能 高低温预报 数据处理

国家自然科学基金中央级公益性科研院所基本科研业务费专项天津市气象局科研项目

41575156IUMKY201605201914ybxm12

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)