首页|基于改进强化学习的超短期光伏集群功率预测

基于改进强化学习的超短期光伏集群功率预测

扫码查看
光伏能源易受到外界干扰,功率波动较大,为保证光伏变电站运行安全,提出基于改进强化学习的超短期光伏集群功率预测方法.通过互信息分析光伏电力数据间的相关性提取关键电力数据,利用主成分分析法降维光伏电力数据,利用长短期记忆(Long Short-Term Memory,LSTM)神经网络得出超短期广度集群功率的预测值,通过改进强化学习算法对大量的预测值不断更新训练,得出带有实时性的功率预测值,实现超短期光伏集群功率预测.实验结果表明,所提方法的功率预测效果较好、运行时间较短.
Ultra-short-term photovoltaic cluster power prediction based on improved reinforcement learning
Photovoltaic energy is vulnerable to external interference,and its power fluctuates greatly.In or-der to ensure the operation safety of photovoltaic substation,an ultra-short-term photovoltaic cluster power forecasting method based on improved reinforcement learning is proposed.The key power data is extracted by mutual information analysis of the correlation between photovoltaic power data,the dimension of photo-voltaic power data is reduced by principal component analysis,and the predicted value of ultra-short-term cluster power is obtained by using LSTM neural network.By improving reinforcement learning algorithm,a large number of predicted values are continuously updated and trained,and the real-time power predicted value is obtained,so as to realize the ultra-short-term photovoltaic cluster power prediction.The experiment results show that the proposed method has good power prediction performance and shorter running time.

reinforcement learningphotovoltaic clusterLSTMpower predictiondata preprocessing

李波、杨永标

展开 >

广东电网有限责任公司电力调度控制中心,广州 510600

东南大学,南京 210000

强化学习 光伏集群 LSTM 功率预测 数据预处理

南方电网公司科技项目江苏省重点研发计划

GDKJXM20212079BE2020688

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)