首页|列车走行部远程监测及图像AI识别技术研究

列车走行部远程监测及图像AI识别技术研究

扫码查看
随着我国对轨道交通建设的大力投入,铁路车辆的状态监测与故障修复的相关要求也日益增长.尤其在当前提速、重载背景下,列车走行部故障的发生率显著增加.针对这一问题,文中基于MIMX RT1064高效图像微处理器,采用OpenART mini高速摄像头获取行进中的列车走行部图像,再通过ESP8266 Wi-Fi模块高频远程无线传输到PC端,在图像进行滤波降噪处理后利用InceptionNet-V3卷积神经网络模型进行训练,最后反馈给OpenART mini摄像头,从而能更准确实时监测走行部状态.结果表明,该系统在能完成列车走行部图像高频稳定传输的同时,也能准确可靠地识别列车转向架故障.
Research on remote monitoring and image AI recognition technology of train running gear
With the strong investment in the construction of rail transportation,the relevant requirements for the condition monitoring and fault repair of railway vehicles also rise.Particularly under the background of speed rise and heavy load,the incidence of train running gear failure increases substantially.To fix this problem,based on MIMX RT1064 efficient image microprocessor,this paper uses OpenART mini high-speed camera to obtain the moving train running gear image,and then transmits it to PC through ESP8266 Wi-Fi module.After the image is filtered and de-noised,the InceptionNet-V3 convolutional neural network model is used for training,and the final feedback is provided to OpenART mini so that the running state can be checked more precisely in real time.The results indicate that the system can not only complete the high frequency and steady transmission of the train running part image,but also accurately and reliably identify the train bogie faults.

remote monitoringvisual AIconvolutionrail traffic

尹朝怡、胡驰、朱军、詹汉彬、张庆龙、向春雷

展开 >

湖北师范大学电气工程与自动化学院,湖北黄石 435000

远程监测 AI视觉 卷积 轨道交通

大学生创新创业训练计划省级项目(2021)湖北省经信厅"科技副总"选派计划(2021)智能物流输送装备湖北省工程实验室开放基金

D2021050-90857322665[2021]732020015

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)