首页|基于卷积神经网络的5G移动通信干扰信号检测

基于卷积神经网络的5G移动通信干扰信号检测

扫码查看
针对5G移动通信信号中存在干扰影响通信性能的问题,提出基于卷积神经网络的5G移动通信干扰信号检测方法.融合软、硬阈值函数优点改进小波阈值函数,对包含干扰信号的5G移动通信信号进行去噪处理,通过傅里叶变换构造时频图并归一化处理,采用引入动量的随机梯度下降算法,训练改进的卷积神经网络,输入归一化后时频图,最终输出干扰信号检测结果.实验结果表明,所提方法去噪能力更强、训练损失更小、训练精度和检测精度更高.
5G mobile communication interference signal detection based on convolutional neural network
Based on the problem that the interference in 5G mobile communication signal affects the com-munication performance,a 5 G mobile communication interference signal detection method based on convo-lutional neural network is proposed.Combining the advantages of soft and hard threshold functions,the wavelet threshold function is improved.The 5G mobile communication signal containing interference signals is denoised.The time-frequency map is constructed by Fourier transform and normalized,and the improved convolutional neural network is trained by using the random gradient descent algorithm with momentum.The normalized time-frequency map is input,and the interference signal detection result is finally output.The experiment results show that the proposed method has stronger denoising ability,smaller training loss,high-er training accuracy and detection accuracy.

Convolutional Neural Network5G mobile communicationinterference signalwavelet thresh-old denoisingtime-frequency map

张洁

展开 >

中国移动通信集团云南有限公司,昆明 650228

卷积神经网络 5G移动通信 干扰信号 小波阈值去噪 时频图

中国移动云南公司立项项目(2021)

YNR2010045

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)