首页|基于自适应调整VGG16模型的乳腺癌风险预测

基于自适应调整VGG16模型的乳腺癌风险预测

扫码查看
乳腺癌的早期诊断可增加癌症治愈的几率,因此提升早期诊断的正确性非常重要.文中结合深度学习框架Pytorch,提出基于深度学习自适应调整VGG16模型(Ad-VGG16)应用于乳腺癌良性恶性分类预测方法.通过利用学习率自适应调整和正负例样本均衡化来优化过拟合和局部最小值问题,采用交叉验证来提高网络的泛化能力,结合修改VGG16网络第一个全连接层以适应任意大小的输入样本.采用VGG16、ResNet18和Ad-VGG16三个模型对DDSM数据集进行正常、良性、恶性分类预测.实验数据表明,与VGG16和ResNet18网络相比,Ad-VGG16网络具有更好的分类准确度,最终的测试分类准确度为94.3%.
A novel risk prediction based on adaptive adjustment VGG16 for breast cancer
Early diagnosis of breast cancer can increase the chance of cancer cure,thus it is important to improve the accuracy of early diagnosis.In this paper,combined with the deep learning framework Pytorch,a deep learning-based adaptive adjustment VGG16 model(AD-VGG16)is proposed to predict the benign and malignant classification of breast cancer.The overfitting and local minimum problems are optimized by adaptive adjustment of learning rate and equalization of positive and negative samples.The generalization a-bility of the network is improved by cross validation.The first fully connected layer of VGG16 network is modified to adapt to input samples of arbitrary size.Three models,including VGG16,ResNet18 and AD-VGG16,are used to predict the normal,benign and malignant classification of DDSM dataset.Experiment data shows that AD-VGG16 network has better classification accuracy than VGG16 and ResNet18 network,and its final test classification accuracy is 94.3%.

deep learningbreast cancerVGG16ResNet18DDSM datasets

岳洋、张维、苗耀锋

展开 >

西安外事学院工学院,西安 710077

深度学习 乳腺癌 VGG16 ResNet18 DDSM数据集

陕西省教育厅科研项目陕西省教育科学规划课题(十四五)陕西省自然科学基础研究计划面上项目陕西省自然科学基础研究计划面上项目

23JK0630SGH23Y29092021JM-5282021JM-527

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)