首页|基于表征自挑战的跨域表情识别

基于表征自挑战的跨域表情识别

扫码查看
不同人脸表情数据集中存在着不可避免的领域差异,而目前的算法通常是针对单一数据集进行训练和评估,因此并不能较好地识别不同风格和环境中的表情.为解决这一问题,文中将领域泛化算法应用在表情识别任务上,利用多种公开人脸表情数据集进行实验,不同于一般的深度学习乃至于迁移学习方法,使用ResNet-50作为骨干网络并统一参数设置,不针对相应测试集进行调参,并采用表征自挑战方法进行训练.实验结果表明,该方法在测试集的平均识别率达到了 63.46%,优于一般的领域自适应算法,说明表征自挑战方法有助于提取表情中更普遍且通用的特征,从而提高了分类准确率.
Cross-domain expression recognition based on representation self-challenging
Domain difference is one of the major obstacles when transferring facial expression recognition systems from one data set to another.However,current algorithms are usually trained and evaluated on a single data set,thus they cannot identify expressions in different styles and environments well.In order to solve this problem,the domain generalization algorithm is applied to the facial expression recognition task.Experiments are conducted using a variety of public facial expression datasets.Compared with the general deep learning and even transfer learning methods,the ResNet-50 is used as the backbone network and unify the parameter settings,the corresponding test set is not adjusted,and the representation self-challenge method is adopted for training.Experiment results show that the average recognition rate of the method in the test data set reaches 63.46%,which is better than the general domain adaptation algorithm.The evi-dence shows that the method helps to extract more general features in expressions,thereby improving the classification accuracy.

facial expression recognitiondeep learningdomain generalizationResNet networkrepre-sentation self-challenging

周扬、方向忠

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

表情识别 深度学习 领域泛化 ResNet网络 表征自挑战

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(5)