首页|一种基于景区评论的静态热词提取模型

一种基于景区评论的静态热词提取模型

扫码查看
热词提取对于景区的发展具有重要意义,目前热词提取方法仍存在分词效果不佳、训练模型耗费大等问题,文中提出一种基于景区评论的静态热词提取模型CRF+TBTT。该模型利用新型算法流程过滤非关键词,分析高频词和特色词,提取候选词,最后得到准确的静态热词。通过对59107条景区评论数据进行实验,结果表明,CRF+TBTT模型的性能均明显优于比较模型,对景区前20个热词提取准确率达到90%,说明该模型对静态热词提取的效果较好,有助于旅游部门对景区进行有效管理和规划。
A static hot word extraction model based on scenic spot comments
Hot word extraction is of great significance to the development of scenic spots.At present,hot word extraction methods still have problems such as poor word segmentation effect and high cost of training models,a static hot word extraction model called CRF+TBTT is proposed based on scenic comments.The model uses a new algorithm process to filter non-keywords,analyzes high-frequency words and featured words,extracts candidate words,and finally obtains accurate static hot words.The experiments based on 59107 scenic spot comments show that the performance of the CRF+TBTT model is significantly better than that of the competitors,and the accuracy rate of extracting the top 20 hot words in the scenic spot reaches 90%.These results suggest that the new model has a good effect on extracting static hot words,which can help tourism departments to effectively manage and plan scenic spots.

scenic spot commentsCRF+TBTT modelTextRank algorithmTF-IDF algorithmstatic hot word

王大睿、张超群、郝小芳、完颜兵、李晓翔

展开 >

广西民族大学电子信息学院,南宁 530006

广西民族大学人工智能学院,南宁 530006

广西混杂计算与集成电路设计分析重点实验室,南宁 530006

景区评论 CRF+TBTT模型 TextRank算法 TF-IDF算法 静态热词

国家自然科学基金广西自然科学基金项目广西民族大学研究生科研创新项目广西民族大学研究生科研创新项目

620620112019GXNSFAA185017gxunchxps202088gxunchxs2021066

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(6)