首页|基于特征融合的复杂道路车辆检测

基于特征融合的复杂道路车辆检测

扫码查看
在车辆检测过程中,由于复杂背景影响较大、远场景车辆目标及遮挡目标特征难以提取,导致出现错检、漏检现象.因此,提出一种基于YOLOv5所改进的复杂背景下的车辆检测算法YOLOv5-B A.通过引入加权双向特征金字塔网络(BiFPN)特征融合思想,并在检测部分引入自适应特征融合模块ASFF来提高检测性能.实验结果表明,改进算法在KITTI数据集上检测精度达到了 98%,检测速度FPS达到了 42,检测精度高于目前主流的目标检测算法.在满足实时性检测要求的前提下,在复杂背景、远场景以及遮挡情况下,YOLOv5-BA具有更优异的表现.
Complex road vehicle detection based on feature fusion
During the process of vehicle detection,due to the great influence of the complex background,as well as the difficulty in extracting the features of vehicle targets and occluded targets in the distant scene,false detection and missed detection occur.Therefore,an improved vehicle detection algorithm YOLOv5-BA under the complex background of YOLOv5 is proposed.By referring to the feature fusion idea of Weighted Bidirectional Feature Pyramid Network(BiFPN),and introducing the adaptive feature fusion module ASFF in the detection part,the detection performance is improved.The experiment results show that the improved algorithm has a detection average precision of 98%on the KITTI dataset,and a detection speed of 42 FPS,and the detection accuracy is higher than the mainstream target detection algorithm.Under the requirements of real-time detection,YOLOv5-BA has better performance in complex background,far scene and occlusion situations.

vehicle detectionYOLOv5complex roadfeature fusion

朱宝全、马长旺、宋亚伟、唐佳乐、赵强

展开 >

东北林业大学交通学院,哈尔滨 150006

上汽通用五菱汽车股份有限公司场景驾驶测试及体验科,广西柳州 545000

车辆检测 YOLOv5 复杂道路 特征融合

国家重点研发计划重点专项中央高校基本科研业务费专项资金项目

2017YFC08039012572016CB18

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(6)