首页|融合k-means与多维特征分析的生物医学图像分类算法

融合k-means与多维特征分析的生物医学图像分类算法

扫码查看
为了提高生物医学图像分类的准确率与速度,提升医学研究者及临床工作者的工作效率,文中提出了一种融合k-means与多维特征分析的生物医学图像分类算法.该算法利用局部二值模式LBP与方向梯度直方图HOG分别提取医学图像中的纹理特征及局部特征两种不同维度的特征信息,并将k-means聚类算法与这种多维特征分析相融合,实现了对生物医学图像的高精度分类.在公开生物医学图像数据集BreakHis上进行的仿真实验结果表明,在二分类实验中,所提算法的准确率为99.03%、精确率为99.12%、召回率为98.96%、F1值为99.04%,在八分类实验中其性能也较为理想,优于SVM、ELM及ResNet等分类算法.
Biomedical image classification algorithm combining k-means and multidimensional feature analysis
In order to improve the accuracy and speed of biomedical image classification and enhance the work efficiency of medical researchers and clinical workers,this paper proposes a biomedical image classifi-cation algorithm that integrates k-means and multidimensional feature analysis.The algorithm uses the Local binary patterns LBP and the directional gradient histogram HOG to extract two different dimensions of fea-ture information,including texture features and local features,respectively,from medical images,and com-bines the k-means clustering algorithm with this multidimensional feature analysis to achieve high-precision classification of biomedical images.The simulation results conducted on the open biomedical image dataset BreakHis show that in the binary classification experiment,the proposed algorithm has an accuracy of 99.03%,an accuracy of 99.12%,a recall of 98.96%,and an Fl value of 99.04%.In the binary classi-fication experiment,its performance is also relatively ideal,superior to classification algorithms such as SVM,ELM,and ResNet.

k-means clustering algorithmmultidimensional feature analysisimage classificationtexture featureslocal features

陈迪、陈云虹、叶青、李改霞

展开 >

空军军医大学基础医学院,西安 710032

空军军医大学教研保障中心,西安 710032

k-means聚类算法 多维特征分析 图像分类 纹理特征 局部特征

陕西省"十四五"教育科学规划课题

SGH22Y1356

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(7)