首页|基于蚁群算法优化的无人机巡检路径规划

基于蚁群算法优化的无人机巡检路径规划

扫码查看
针对传统蚁群算法存在的路径搜索方向和视野受限、无法找到最短路径、容易发生死锁等问题,提出了一种适用于网格地图环境下的优化蚁群算法.该方法对网格地图环境进行预处理,提取障碍物的特征点,并选择这些特征点作为寻路访问节点;然后,基于蚁群算法,采用信息素不均匀分布来提高解的构造效率,采用Tent混沌映射增强路径搜索的引导作用,动态调整信息素挥发系数以避免算法过早收敛.最后,通过对比文中算法、传统蚁群算法在复杂的网格地图环境的仿真结果,验证文中算法的可行性、有效性及优越性.
Optimization of unmanned aerial vehicle inspection path planning based on ant colony algorithm
To solve the problems of traditional ant colony algorithm,such as limited path search direction and vision,inability to find the shortest path,and prone to deadlock,an optimized ant colony algorithm suitable for grid map environment is proposed.This method preprocesses the grid map environment,extracts the feature points of obstacles,and selects these feature points as path-finding access nodes.Then,based on the ant colony algorithm,the uneven distribution of pheromone is used to improve the construction effi-ciency of the solution,and the Tent chaotic map is used to enhance the guidance of the path search,and the pheromone volatilization coefficient is dynamically adjusted to avoid premature convergence of the algo-rithm.Finally,by comparing the simulation results of the proposed algorithm and the traditional ant colony algorithm in the complex grid map environment,the feasibility,effectiveness and superiority of the proposed algorithm are verified.

ant colony algorithmunmanned aerial vehicle inspectionpath planningdata processingstructural optimization

张驰、任焰辉、张立、周海军

展开 >

73106部队,江苏淮安 223300

中科南京信息高铁研究院,南京 210000

蚁群算法 无人机巡检 路径规划 数据处理 结构优化

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(7)