首页|面向无人机无人船自组网的NDN智能数据转发策略

面向无人机无人船自组网的NDN智能数据转发策略

扫码查看
无人机和无人船组成的移动自组织网络存在通信环境恶劣和网络拓扑结构变化频繁等挑战,导致网络性能变差。针对这一问题,建立以数据为中心的命名数据网络(Named Data Networking,NDN)网络架构,在此基础上提出基于深度强化学习的智能数据转发策略。利用深度强化学习实时感知网络动态变化,优化数据转发策略,设计优先采样和双重Q网络算法,加快深度强化学习收敛速度。实验结果表明,该策略可以有效降低时延并提高兴趣包满足率。
Intelligent data forwarding strategy of Named Data Networking(NDN)for UAV and USV Ad Hoc Networks
The mobile ad hoc network composed of Unmanned Aerial Vehicle(UAV)and Unmanned Ves-sel(USV)has some challenges,such as poor communication environment and frequent changes in network topology,which lead to poor network performance.To solve this problem,a data-centric NDN network ar-chitecture is established,and based on which an intelligent data forwarding strategy based on deep reinforce-ment learning is proposed.Deep reinforcement learning is used to sense the dynamic changes of the network in real time,optimize the data forwarding strategy,and design the priority sampling and double Q-network al-gorithms to accelerate the convergence speed of deep reinforcement learning.Experiment results show that the proposed strategy can effectively reduce the delay and improve the satisfaction rate of interest packets.

Named Data NetworkingMobile Ad Hoc Networkdeep reinforcement learningforwarding strategynetwork simulation

李世宝、李文睿

展开 >

中国石油大学(华东)海洋与空间信息学院,山东青岛 266580

命名数据网络 移动自组织网络 深度强化学习 转发策略 网络仿真

国家自然科学基金-山东省联合基金国家自然科学基金

U190621761972417

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(8)