首页|应用特征融合预测富士苹果可溶性固形物含量

应用特征融合预测富士苹果可溶性固形物含量

扫码查看
针对传统苹果无损检测方法成本高,不利于携带等问题,使用富士苹果RGB图像的不同特征预测其可溶性固形物含量。通过统计方法和卷积神经网络提取苹果图像的颜色特征、纹理特征和局部特征。拼接以上特征,利用融合特征训练回归模型,得到预测结果。结果表明,基于融合特征的模型的预测决定系数R2p=0。6557,优于基于单一特征的模型。
The prediction of soluble solids content of fuji apples based on feature fusion
To address the problems of high cost and portability of traditional apple nondestructive testing methods,different features of RGB images of Fuji apples are used to predict their soluble solids content.The color features,texture features and local features of apple images are extracted by statistical methods and convolutional neural networks,and the prediction results are obtained by splicing the above features and training regression models using fused features.The results show that the prediction coefficient of determina-tion R2p=0.6557 for the model based on fused features is better than that of the model based on single fea-tures.

soluble solids contentfuji appleRGB imageconvolutional neural networkfeature fusion

喻加停、宾峰、刘安

展开 >

长沙理工大学物理与电子科学学院,长沙 410000

可溶性固形物 富士苹果 RGB图像 卷积神经网络 特征融合

湖南省研究生科研创新项目湖南省教育厅资助科研项目

CX2021082521C0169

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(8)