首页|基于深度学习的电离层数据识别与表格恢复

基于深度学习的电离层数据识别与表格恢复

扫码查看
针对电离层印刷体历史数据清晰度低和字符相似问题,提出基于DBNET与CRNN的电离层数据检测与识别方法。通过图片预处理去除噪声干扰,采用DBNET定位目标图片的文本区域;增加CRNN中的卷积层,将两个池化层的窗口大小改为2 ×1,从而提取更大宽度的特征识别检测到的文本,并加入批量归一化处理加速训练;利用RARE完成识别结果的表格恢复。实验结果表明,该方法对电离层印刷体数据具有良好的识别效果,字符正确识别率达到98%以上。
Ionospheric data recognition and form recovery based on deep learning
To address the problems of low clarity and character similarity of historical data of ionospheric prints,an ionospheric data detection and recognition method based on DBNET and CRNN is proposed.The noise interference is removed through image preprocessing,and DBNET is used to locate the text area of the target image.The convolutional layer in CRNN is added,and the window size of the two pooling layers is changed to 2 × 1 to extract the text detected by feature recognition with a larger width,and batch normaliza-tion processing is added to accelerate training.RARE is used to complete the form recovery of identification results.Experiment results show that this method has a good recognition effect on ionospheric printed body data,and the correct recognition rate of characters reaches more than 98%.

deep learningprinted datacharacter detectioncharacter recognitionForm recovery

鲁月、苏桂昌、邵巍、刘祥鹏

展开 >

青岛科技大学,山东青岛 266061

深度学习 印刷体数据 字符检测 字符识别 表格恢复

青岛科技大学2022年国家级大学生创新训练计划项目

202210426009

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(9)