首页|基于决策级融合的成绩预测方法研究

基于决策级融合的成绩预测方法研究

扫码查看
针对当前基于单一方法构建的预测模型普遍存在预测准确性较低、泛化能力较弱的问题,提出基于决策级融合的成绩预测方法.首先,分别构建基于高斯过程回归和偏最小二乘的成绩预测模型;然后,根据两个模型的预测结果调整各自权重;最后,将两个模型的决策加权融合得到最终的预测结果.为了验证提出方法的有效性和稳定性,在某校化学、汉语言文学等七个专业真实数据上进行了大量的随机实验,并同主流预测方法进行对比.实验结果表明,提出方法具有更高的预测性和稳定性,可以为师生改进教学方式提供更为可信的决策支撑.
Research on performance prediction method based on decision level fusion
To solve the problems of low prediction accuracy and weak generalization ability of prediction model based on single method,a performance prediction method based on decision level fusion is proposed.Firstly,performance prediction models based on Gaussian process regression and partial least squares are constructed,respectively.Then,the weights of the two models are adjusted according to the prediction re-sults.Finally,the final prediction result is obtained by combining the decision weights of the two models.In order to verify the effectiveness and stability of the proposed method,a large number of random experi-ments are carried out on the real data of seven majors such as Chemistry and Chinese Language and Litera-ture in a university,the reaults which are compared with the mainstream prediction methods.The experi-ment results show that the proposed method has higher prediction performance and stability,and can pro-vide more credible decision support for teachers and students to improve teaching and learning methods.

education data miningfeature selectiondegree predictionpartial least squaregaussian process regression

李劲松、王娜、姚明海、刘鸿雁、张野

展开 >

渤海大学信息科学与技术学院,辽宁锦州 121013

渤海大学教育科学学院,辽宁锦州 121013

教育数据挖掘 特征选择 学位预测 偏最小二乘回归 高斯过程回归

辽宁省社会科学规划基金项目渤海大学博士启动项目渤海大学校级教学改革研究项目渤海大学校级科研项目

L22BTJ0020519bs016BHUXJGZ20221500524xn03804

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(9)
  • 5