首页|改进时空图卷积神经网络的多设备能耗预测

改进时空图卷积神经网络的多设备能耗预测

扫码查看
为帮助企业实现高能耗设备的节能,针对负荷预测的已有研究大多集中在单一设备且重点考虑数据的时间特征,缺乏对设备空间特征的分析.文中提出一种基于时空图卷积神经网络(STGCN)的多设备能耗预测算法.该方法采用切比雪夫图卷积(Cheb-GC)层提取空间特征和改进的门控时间卷积(GTCN)层提取时间特征,通过嵌入图邻接矩阵达到多设备联合预测的目的.结合某高能耗企业的真实数据,与历史平均回归模型(HA)、自回归积分滑动平均模型(ARIMA)、前馈神经网络(FNN)和门控循环单元(GRU)网络进行了对比实验,结果表明所提算法具备更优越的性能,预测结果能够满足实际应用要求.
Multi-Equipment energy consumption prediction based on improved STGCN
In order to help enterprises realize energy saving of high energy consumption equipment.Most existing researches on equipment load forecasting focus on single equipment and give priority to the time characteristics of data,but lack the analysis of spatial characteristics.This paper a multi-equipment energy consumption prediction method based on Spatio-Temporal Graph Convolution Neural Network(STGCN)is proposed.The Chebyshev Graph Convolution(Cheb-GC)layer and the improved Gated Temporal Convolu-tion Network(GTCN)are used to extract spatial features and temporal features.Through embedding graph adjacency matrix,this method achieves the purpose of multi-equipment joint prediction.Combined with the real data set,the proposed model is compared with the Historical Average(HA)regression model,Autore-gressive Integrated Moving Average(ARIMA)model,Feedforward Neural Network(FNN)and Gated Re-current Unit(GRU)network.The results show that this algorithm has better performance,and the predic-tion results meet the requirements of practical application.

multi-equipment energy consumption predictionSpatio-Temporal characteristicsGraph Neu-ral NetworkData Miningdeep learning

蔡同尧、曾献辉

展开 >

东华大学信息科学与技术学院,上海 201620

多设备能耗预测 时空特征 图神经网络 数据挖掘 深度学习

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(9)
  • 3