首页|基于架构搜索的雷达回波降雨强度分类算法

基于架构搜索的雷达回波降雨强度分类算法

扫码查看
天气雷达是降雨监测的重要手段,基于天气雷达降雨回波特征实现准确的降雨强度分类至关重要。文中提出了基于3D注意力模块的CNN(EA-CNN)进化搜索算法,算法利用遗传算法(GA)自动搜索最优结构,快速优化CNN架构的宽度与深度,准确找到最佳CNN结构,具有很强的泛化能力。算法引入3D注意力模块有效抑制分类中的干扰像素问题,能够准确提取各强度降雨特征,帮助相关人士从雷达回波中快速获取降雨分级结果。实验表明,与4种经典的算法(KNN、SVM、VGG、ResNet12)相比,所提出的算法在人力、物力等成本上更具竞争性,分类准确率提升7。95%。
Radar echo rainfall intensity classification algorithm based on architecture search
Weather radar is an important means to monitor rainfall,which is very important to achieve accu-rate classification of rainfall intensity based on rainfall echo characteristics of weather radar.This paper pro-poses an Evolutionary Search Algorithm for CNN(EA-CNN)based on 3D attention module.The algorithm uses Genetic Algorithm(GA)to automatically search the optimal structure,quickly optimize the width and depth of CNN architecture,and accurately find the optimal CNN structure,which has strong generalization ability.The 3D attention module is introduced in the algorithm to effectively suppress the problem of inter-fering pixels in classification,which can accurately extract the rainfall characteristics of each intensity,and help relevant people to quickly obtain the rainfall classification results from the radar echoes.Experiments show that compared with four classical algorithms(KNN,SVM,VGG,ResNetl2),the proposed algorithm is more competitive in labor and material costs,and the classification accuracy is improved by 7.95%.

Convolutional Neural Network(CNN)Neural Architecture Search(NAS)Radar rainfall in-tensityGenetic Algorithm(GA)3 D attention module

柴怡君、陆冰鉴、陆振宇、颜诗洋

展开 >

南京信息工程大学人工智能学院,南京 210000

法国国家信息与自动化研究所,法国巴黎75020

卷积神经网络(CNN) 神经架构搜索(NAS) 雷达降雨强度 遗传算法(GA) 3D注意力模块

国家自然科学基金联合重点项目

U20B0

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(10)