首页|基于YOLOv5的轻量级布匹疵点检测模型

基于YOLOv5的轻量级布匹疵点检测模型

扫码查看
针对人工检测布匹疵点效率低、漏检误检严重的现象,文中提出一种基于YOLOv5算法的布匹疵点检测模型G-YOLOv5。该模型首先利用Ghost卷积机制代替传统卷积,减少冗余的参数量和计算量;其次在骨干网络的最后加入协同注意力机制,加强对小目标物体的分类和定位性能;同时,使用轻量化的上采样算子CARAFE减少在特征处理过程中的特征损失。实验结果表明,改进后的算法在布匹疵点检测数据集上的平均准确率为88。4%,相比于YOLOv5算法提高了 2。2个百分点,参数量缩减了一半,能够在较小的模型下达到较高的检测精度,满足实际工业的检测需求。
A Light weight fabric defect detection model based on YOLOv5
On the basis of the low efficiency of manual detection of cloth defects and false detection,a fab-ric defect detection model G-YOLOv5 based on YOLOv5 algorithm is proposed.Firstly,Ghost module is a-dopted to replace the traditional convolution to reduce the amount of redundant parameters and calculation.Secondly,Coordinate Attention is added at the end of the backbone,strengthening the classification and po-sitioning performance of small target objects.Meanwhile,the lightweight up-sampling operator CARAFE is used to reduce the feature loss in the process of feature processing.The results show the mean average accura-cy of the improved algorithm on the fabric defect detection data set is 88.4%,which is 2.2 percentage points higher than that of YOLOv5 algorithm.And the amount of parameters is reduced to half of YOLOv5,which can achieve high detection accuracy in a small model and meet the detection needs of contemporary industry.

fabric defect detectionYOLOv5Ghostcoordinate attentionCARAFE

阚盛琦、方巍、吴嘉怡、郭孝庚

展开 >

南京信息工程大学计算机学院、网络空间安全学院,南京 210044

气象灾害国家重点实验室,北京 100081

南京信息工程大学,江苏省大气环境与装备技术协同创新中心,南京 210044

布匹疵点检测 YOLOv5 Ghost 协同注意力机制 CARAFE

南京信息工程大学大学生创新创业训练计划项目2023年度南京信息工程大学"优秀本科毕业设计(论文)支持计划"国家自然科学基金面上项目灾害天气国家重点实验室开放课题

XJDC202210300193BSZC2023021420750072021LASWB19

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(10)