首页|基于视觉特征融合的交通量组合预测模型

基于视觉特征融合的交通量组合预测模型

扫码查看
交通量组合预测存在预测不准、预测误差大的问题,为此,文中以大数据为基础提出基于视觉特征融合的交通量组合预测模型.计算时间双向交通流序列,对时间序列交通量数据进行分析.灰度化处理识别出的交通量视觉图像颜色分量,提取时空关联信息,获取空间-时间线序列符.融合时间和空间特性交通量序列,输入视觉特征融合特征,自适应调整时间和空间序列预测加权因子,构建交通量组合预测模型.由实验结果可知,该方法对工作日交通量预测的最大误差为1%,休息日预测误差为0,预测效果精准.
Traffic volume combination prediction model based on visual feature fusion
In the traffic volume combination prediction,there are problems of inaccurate traffic volume pre-diction and large prediction error,therefore,a traffic volume combination prediction model based on visual feature fusion is proposed based on big data.The time-based bilateral traffic flow series are calculated,and the time-series traffic volume data is analyzed.The identified color components of the visual image of traffic volume are grayed,the spatiotemporal association information is extracted,and the space-time sequence symbols are obtained.The temporal characteristic traffic volume sequence and the spatial characteristic traf-fic volume series are integrated,the visual features are fused by input,and the time-space series prediction weighting factor is adaptively adjusted to construct a traffic volume combination prediction model.It can be seen from the experiment results that the maximum error of weekdays'traffic volume prediction is 1%,and the prediction error of rest day is 0,which has an accurate prediction effect.

big datavisual feature fusiontraffic volumetime seriesspace sequence

崔宇

展开 >

西安翻译学院,西安 710105

大数据 视觉特征融合 交通量 时间序列 空间序列

陕西省教育厅一般项目

22JK0086

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(10)