首页|基于KPCA-PIO-ELM模型的管道剩余寿命预测分析

基于KPCA-PIO-ELM模型的管道剩余寿命预测分析

扫码查看
为了提高腐蚀管道剩余寿命预测精度,提出基于核主成分分析(KPCA)和鸽群优化算法(PIO)的极限学习机(ELM)预测模型.通过KPCA提取关键腐蚀因素,降低预测指标维度;采用PIO对ELM的输入权值及隐层阈值进行优化,提升预测精度.为检验模型效能,以某注水管道的50组数据为例进行研究,并与ELM、BP两组模型的预测结果进行对比分析,结果表明:构建模型的MAE、MAPE、RMSE均优于对比模型,证明KPCA-PIO-ELM模型在预测注水管道剩余寿命方面具有可行性及优越性.
Prediction and analysis of pipeline remaining life based on KPCA-PIO-ELM model
In order to improve the prediction accuracy of remaining life of corroded pipelines,an Extreme Learning Machine(ELM)prediction model based on Kernel Principal Component Analysis(KPCA)and Pigeon Colony Optimization algorithm(PIO)is proposed.The key corrosion factors are extracted by KPCA to reduce the dimension of prediction index.PIO is used to optimize the input weight and hidden layer threshold of ELM to improve the prediction accuracy.In order to test the efficiency of the model,50 sets of data of a water injection pipeline are taken as an example to study,and compared with ELM and BP mod-els.The results show that MAE,MAPE and RMSE of the model are better than the comparison model,which proves that KPCA-PIO-ELM model is feasible and obviously superior in predicting the remaining life of water injection pipeline.

remaining life predictioncorrosion pipelinekernel principal component analysispigeon col-ony optimization algorithmextreme learning machine

霍奕宇、李西锋

展开 >

陕西国防工业职业技术学院机械工程学院,西安 710300

剩余寿命预测 腐蚀管道 核主成分分析 鸽群优化算法 极限学习机

陕西国防工业职业技术学院科研项目

Gfy22-63

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(10)