首页|基于CNN算法及多特征融合的老人摔倒预测系统构建

基于CNN算法及多特征融合的老人摔倒预测系统构建

扫码查看
随着中国老龄化社会的到来,应对老年人口安全问题,特别是摔倒问题,变得越来越重要.提出了一种基于卷积神经网络(CNN)和多特征融合的预测系统.该系统整合了图像和生理信号等多种类型的特征信息,以提高摔倒预测的准确性.实验验证了基于CNN的多模型结构在老人摔倒预测中的优越性,以及多特征融合策略对模型性能的提升作用.与其他方法相比,所提出的方法在准确率、召回率、精确率和F1分数方面表现出优越性,准确率可达到95.93%.此研究为预测和预防老年人摔倒提供了一种高效且可靠的方法.
Construction of an elderly man falling prediction system based on CNN algorithm and multi-feature fusion
As China enters an aging society,addressing safety issues for the elderly population,especially the problem of falling has become increasingly important.A prediction system based on Convolutional Neu-ral Networks(CNN)and multi-feature fusion has been proposed.This system integrates various types of feature information,such as images and physiological signals,to improve the accuracy of falling prediction.Experiments have validated the superiority of the multi-model structure based on CNN in predicting the eld-erly man falling and the enhancement of model performance by the multi-feature fusion strategy.Compared to other methods,the proposed method demonstrates superior performance in terms of accuracy,recall,pre-cision,and F1 score,with an accuracy of 95.93%.This research provides an efficient and reliable method for predicting and preventing falling among the elderly man.

CNN algorithmmulti-feature fusionfeature extractionprediction of elderly man fallingda-ta set

胡昕、刘瑞安、黄玉兰、任超、徐宇辉

展开 >

天津师范大学电子与通信工程学院,天津 300380

CNN算法 多特征融合 特征提取 老人摔倒预测 数据集

天津师范大学研究生科研创新项目资助

2022KYCX-105Y

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(10)