信息技术2024,Issue(10) :111-119.DOI:10.13274/j.cnki.hdzj.2024.10.017

基于机器学习的人力薪资管理及绩效优化体系研究

Research on human salary management and performance optimization system under machine learn-ing

余玥 张戈 岳晓婧 陈卓
信息技术2024,Issue(10) :111-119.DOI:10.13274/j.cnki.hdzj.2024.10.017

基于机器学习的人力薪资管理及绩效优化体系研究

Research on human salary management and performance optimization system under machine learn-ing

余玥 1张戈 1岳晓婧 1陈卓1
扫码查看

作者信息

  • 1. 北京市科学技术研究院,北京 100089
  • 折叠

摘要

针对当前研究对于人力薪资管理及绩效优化并不理想的现状,构建了一种基于机器学习改进薪资和绩效的模型.基于XGBoost和GBDT算法研究了主观与客观因素对薪资的影响,通过优化对其模型准确率进行RMSE误差分析,得出XGBoost算法模型的RMSE22.36,GBDT算法模型的RMSE为39.85;采用层次分析法对绩效各指标权重进行了研究评价,实现了绩效指标的科学设定以及机器学习框架下数据监测的动态调整,验证了该模型对于人力薪资管理及绩效优化体系的有效性.

Abstract

Based on the fact that the current research is not ideal for human salary management and per-formance optimization,a model which introduces machine learning is constructed to improve salary and per-formance.Based on XGBoost and GBDT algorithm,the influence of subjective and objective factors on sala-ry is studied.RMSE error analysis is carried out on the model accuracy rate through optimization,and the accuracy rate of XGBoost algorithm model is RMSE22.36 and that of GBDT algorithm model is 39.85.The analytic hierarchy process is used to study and evaluate the weight of each performance indicator,which re-alizes the scientific setting of performance indicators and the dynamic adjustment of data monitoring under the framework of machine learning,and verifies the effectiveness of this model for the research of human salary management and performance optimization system.

关键词

机器学习/薪资管理/绩效优化/动态调整/层次分析法

Key words

machine learning/salary management/performance optimization/dynamic adjustment/ana-lytic hierarchy process

引用本文复制引用

基金项目

北京市科学技术委员会-城市科技与精细化管理"揭榜挂帅"项目(Z221100005222019)

出版年

2024
信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
段落导航相关论文