首页|基于传感器获取骨架信息的舞蹈动作分类

基于传感器获取骨架信息的舞蹈动作分类

扫码查看
为了对视频中的舞蹈动作规范性实现有效分类,提出了一种基于Kinect传感器获取人体骨骼运动数据的舞蹈分类方法.通过视频每帧中舞蹈动作的六个核心角度生成级联向量,运用主成分分析(PCA)将高维向量投影到低维空间,结合线性判别分析(LDA)得到具有识别能力的特征向量.设计了基于校正线性单元(ReLU)的极限学习机分类器(ELMC),利用ReLU函数解决神经网络设计中的梯度消失问题,在不需权值学习的情况下实现了舞蹈动作的快速分类处理.实验结果表明:与传统方法相比,文中方法具有更好的分类结果且最大分类率可达到96.5%.
Dance movement classification based on skeleton information obtained by sensors
In order to achieve effective classification of dance movement in video standardization,a dance classification method based on Kinect sensor to obtain human skeleton motion data is proposed.Cascade vectors are generated from the six core angles of dance movements in each frame of the video.Principal Component Analysis(PCA)is used to project high-dimensional vectors into low dimensional space,and Linear Discriminant Analysis(LDA)is combined to obtain feature vectors with recognition ability.An Ex-treme Learning Machine Classifier(ELMC)based on the Rectified Linear Unit(ReLU)is designed.The ReLU function is used to solve the gradient disappearance problem in the neural network design,and the fast classification processing of dance movements is realized without weight learning.The experiment results show that compared with the traditional methods,the proposed method has better classification results,and the maximum classification rate can reach 96.5%.

principal component analysislinear discriminant analysisextreme learning machinedance movementsbone joint data

陈琳、王晓飞

展开 >

陕西青年职业学院小学教育系,西安 710068

延安大学数学与计算机科学学院,陕西延安 716000

主成分分析 线性判别分析 极限学习机 舞蹈动作 骨骼关节数据

国家自然科学基金项目2020年陕西省职业技术教育学会高职高专院校课程思政研究与实践课题

617512182020SZJSZ-075

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(10)