首页|改进蚁群算法的仓储机器人路径规划研究

改进蚁群算法的仓储机器人路径规划研究

扫码查看
随着物流行业的快速发展,仓储机器人成为物流行业的重要部分,针对传统蚁群算法在仓储机器人工作初期具有盲目性、寻找路径过长和搜索资源浪费的问题,文中提出了一种融合算法。首先,根据不同的标准利用粒子群算法对蚁群算法的主要参数进行寻优,得到蚁群算法最优的参数组合,避免了算法初期的盲目性;其次,针对半包围地图易出现的路径过长的问题,提出了一种虚拟目标法;最后,将蚁群算法与黏菌算法融合解决了搜索资源浪费的问题。与不同算法相比,文中算法在路径长度、死锁蚂蚁个数以及效率等参数上优于其他算法。
Research on path planning of storage robot based on the improved ant colony optimization algo-rithms
With the rapid development of the logistics industry,warehousing robots have become an impor-tant part of the logistics industry.In response to the blind nature,long search paths and waste of search re-sources of traditional ant colony algorithms in the early stages of warehousing robots,this paper proposes a fusion algorithm.Firstly,the particle swarm optimization algorithm is used to optimize the main parameters of the ant colony algorithm according to different standards,and the optimal parameter combination of the ant colony algorithm is obtained,avoiding the initial blindness of the algorithm.Secondly,a virtual target method is proposed to address the problem of long paths in semi enclosed maps.Finally,the fusion of ant colony algorithm and slime mold algorithm solved the waste of search resources.By comparing with different algorithms,our algorithm outperforms other algorithms in terms of path length,number of deadlock ants,and efficiency.

path planningstorage robotparticle swarm optimizationant colony algorithmslime mold algorithm

刘文强、李涛、赵宏生、徐一凡、高鹏飞

展开 >

南京信息工程大学自动化学院,南京 210044

江苏省大气环境与装备技术协同创新中心,南京 210044

路径规划 仓储机器人 粒子群算法 蚁群算法 黏菌算法

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(12)