首页|基于改进SSD的高空绝缘子缺陷检测算法

基于改进SSD的高空绝缘子缺陷检测算法

扫码查看
针对高空绝缘子背景复杂、缺陷目标较小等因素造成小目标检测效果不佳,提出了一种改进的基于残差融合注意力模块的SSD(Residual Fusion Attention Module,RFAM-SSD)小目标检测算法。首先将网络一分为二,主干网络通过残差网络的多重特征循环融合模块(ResNet Multiple Cycle Fea-ture Fusion Module,RES-MFCFM)得到特征层,经过卷积得到六个预测特征层,分支网络通过卷积得到对应的六个特征层,两分支通过RFAM,得到最终的六个特征层来检测目标;设计Focal-IOU Loss来代替原损失,提高检测效果。实验表明改进后的算法mAP为92。4%,比原始SSD算法提高了 7。2%,且满足实时检测需求,表明该检测算法对于绝缘子缺陷小目标有较好的检测效果。
High-altitude insulator defect detection algorithm based on improved SSD
According to the poor detection effect caused by the complex background of high-altitude insula-tors and the small defect target,an improved small-target detection algorithm based on Residual Fusion At-tention Module(RFAM-SSD)is proposed.Firstly,the network is divided into two parts.The backbone network obtains the feature layer through the Multiple Cycle Feature Fusion Module(ResNet Multiple Cycle Feature Fusion Module,RES-MFCFM)of the residual network,and six predictive feature layers are ob-tained through convolution.The branch network obtains the corresponding six feature layers through convo-lution,while the two branches obtain the final six feature layers through RFAM to detect the target.Focal-1OU Loss is designed to replace the original loss and improve the detection effect.Experiments show that the mAP of the improved algorithm is 92.4%,which is 7.2%higher than that of the original SSD algorithm,and meets the real-time detection requirements,indicating that the detection algorithm has a good detection effect on small insulator defect targets.

small target detectionSSD algorithmresidual networkattention mechanismfeature fusion

俞俊、武丽、付相为、张征浩、葛彩成

展开 >

南京信息工程大学电子与信息工程学院,南京 210000

无锡学院电子信息工程学院,江苏无锡 214000

小目标检测 SSD算法 残差网络 注意力机制 特征融合

2024

信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
年,卷(期):2024.(12)