信息技术2024,Issue(12) :115-123.DOI:10.13274/j.cnki.hdzj.2024.12.017

融合深度主动学习的军事物流实体识别研究

Research on military logistics entity recognition based on deep active learning

罗少锋 詹威威 王静 陈可夫
信息技术2024,Issue(12) :115-123.DOI:10.13274/j.cnki.hdzj.2024.12.017

融合深度主动学习的军事物流实体识别研究

Research on military logistics entity recognition based on deep active learning

罗少锋 1詹威威 2王静 1陈可夫1
扫码查看

作者信息

  • 1. 军事科学院系统工程研究院,北京 100166
  • 2. 天津卓朗科技发展有限公司,天津 300133
  • 折叠

摘要

针对军事领域实体识别模型训练需要大量标注语料,且开源语料数据缺乏等问题,提出一种融合主动学习与深度学习的军事物流需求实体识别模型训练方法.将不同选样策略的主动学习方法融入BERT-BiLSTM-CRF模型训练中,通过筛选有价值的训练样本,快速提升军事物流需求实体识别模型的泛化能力,同时也减少了样本标注的数量,实现使用少量标注语料训练模型.实验表明,在保证模型性能的前提下,不确定性和多样性的选样策略分别使人工标注量减少56.25%、62.5%,有效降低模型训练所需样本量,对语料缺少的军事物流领域需求实体识别任务具有重要意义.

Abstract

To solve the problems that a large amount of annotated corpus is required for entity recognition model training in military domain and the lack of open source corpus data,this paper proposes a training method for entity recognition model of military logistics requirements that integrates active learning and deep learning.By incorporating active learning methods with different sample selection strategies into BERT-BiL-STM-CRF model training,the generalization ability of the military logistics demand entity recognition model is rapidly improved by screening valuable training samples,and the number of sample annotations is also re-duced to achieve a small amount of annotated corpus to train the model.Experiments show that the uncer-tainty and diversity sample selection strategies reduce the expert annotation by 56.25%and 62.5%,re-spectively,under the premise of guaranteeing the model performance,effectively reducing the sample size required for model training,which is important for the demand entity recognition task in the military logis-tics domain where the corpus is lacking.

关键词

军事物流/BERT/实体识别/主动学习/深度学习

Key words

military logistics/BERT/entity recognition/active learning/deep learning

引用本文复制引用

出版年

2024
信息技术
黑龙江省信息技术学会 中国电子信息产业发展研究院 中国信息产业部电子信息中心

信息技术

CSTPCD
影响因子:0.413
ISSN:1009-2552
段落导航相关论文