MOF-derived nanocarbon materials for electrochemical catalysis and their advanced characterization
Because of the demand for clean and sustainable energy sources,nanocarbons,modified carbons and their composite materials derived from metal-organic frameworks(MOFs)are emerging as distinct catalysts for electrocatalytic energy conversion.These materials not only inherit the advantages of MOFs,like customizable dopants and structural diversity,but also effectively pre-vent the aggregation of nanoparticles of metals and metal oxides during pyrolysis.Consequently,they increase the electrocatalytic ef-ficiency,improve electrical conductivity,and may play a pivotal role in green energy technologies such as fuel cells and metal-air batteries.This review first explores the carbonization mechanism of the MOF-derived carbon-based materials,and then considers 3 key aspects:intrinsic carbon defects,metal and non-metal atom doping,and the synthesis strategies for these materials.We also provide a comprehensive introduction to advanced characterization techniques to better understand the basic electrochemical catalys-is processes,including mapping techniques for detecting localized active sites on electrocatalyst surfaces at the micro-to nano-scale and in-situ spectroscopy.Finally,we offer insights into future research concerning their use as electrocatalysts.Our primary object-ive is to provide a clearer perspective on the current status of MOF-derived carbon-based electrocatalysts and encourage the develop-ment of more efficient materials.