首页|利用激光制备多层石墨烯设计的对称超级电容器器件的电化学性能

利用激光制备多层石墨烯设计的对称超级电容器器件的电化学性能

扫码查看
本研究报告了一种经济高效的激光诱导石墨烯(LIG)制备方法,该方法可提高LIG在超级电容器中的电化学性能。以聚酰亚胺聚合物为原料,在环境条件下用CO2激光照射可合成LIG。通过拉曼光谱和傅里叶变换红外光谱对制备的LIG样品进行了表征,验证了含有sp2杂化C=C键的多层石墨烯的形成。FE-SEM展示出LIG的三维(3D)片状结构,HR-TEM图像显示了晶面间距约为0。33 nm的晶格平面,对应于石墨烯的(002)平面。LIG的电化学性能显示,在1 mA cm-2(3。3 A g-1)的电流下,在1 mol L-1 KOH作为水性电解质的三电极配置中,其面积比电容(CA)为51 mF cm-3(170 Fg-2)。LIG电极有3。5 μWh cm-2能量密度、350 μW cm-2的功率密度等显著的储能能力。它们还具有优异的循环稳定性,在1 mA cm-2下循环3 000次后仍保持87%的比电容。使用LIG电极和1 mol L-1 KOH电解质制造的对称超级电容器的比电容为23 mF cm-2,在10 000次循环后表现出优异的保留率,显示了 LIG在超级电容器中的应用潜力。
Electrochemical performance of a symmetric supercapacitor device designed using laser-produced multilayer graphene
We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO2 laser.The prepared LPG samples were characterized by Raman spectroscopy and FTIR,which validated the formation of multilayer graphene containing sp2 hybridized C=C bonds.FE-SEM revealed three-dimensional(3D)sheet-like structures,while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm,corres-ponding to the(002)plane of graphene.Their electrochemical performance showed a remarkable areal specific capacitance(CA)of 51 mF cm-2(170 F g-1)at 1 mA cm-2(3.3 A g-1)in a three-electrode configuration with 1 mol L-1 KOH as the aqueous electrolyte.The LPG electrodes produced an energy density of~3.5 μWh cm-2 and a power density of~350 μW cm-2,demonstrating signific-ant energy storage ability.They also had an excellent cycling stability,retaining 87%of their specific capacitance after 3 000 cycles at 1 mA/cm2.A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L-1 KOH electrolyte had a specific capacit-ance of 23 mF cm-2 and showed excellent retention after 10 000 cycles,showing LPG's potential for use in supercapacitors.

SupercapacitorsGrapheneLPGElectrochemical studiesCharge storage mechanism

Gargi Dhiman、Kavita Kumari、Bon-Heun Koo、Faheem Ahmed、Nagih M.Shaalan、Saurabh Dalela、Parvez A.Alvi、Ranjeet Kumar Brajpuriya、Shalendra Kumar

展开 >

Department of Physics,School of Advanced Engineering,UPES,Dehradun 248007,India

Industrial Technology Research Institute,Changwon National University,Changwon,Gyeongnam 51140,Republic of Korea

Department of Applied Sciences and Humanities,Faculty of Engineering and Technology,Jamia Millia Islamia,New Delhi 110025,India

Department of Physics,College of Science,King Faisal University,P.O.Box 400,Al-Ahsa 31982,Saudi Arabia

Physics Department,Faculty of Science,Assiut University,Assiut 71516,Egypt

Department of Pure & Applied Physics,University of Kota,Kota,Rajasthan 324005,India

Department of Physical Science,Banasthali Vidyapith,Banasthali,Rajasthan,304022,India

展开 >

超级电容器 石墨烯 激光直写石墨烯 电化学研究 电荷储存机理

2024

新型炭材料
中国科学院山西煤炭化学研究所

新型炭材料

CSTPCD北大核心
影响因子:0.685
ISSN:1007-8827
年,卷(期):2024.39(6)