首页|一种基于AdaBoost模型的区块链异常交易检测方案

一种基于AdaBoost模型的区块链异常交易检测方案

扫码查看
针对区块链系统加密货币交易记录中存在的盗币异常行为,文章基于AdaBoost模型提出一种具有隐私保护功能的异常交易检测方案.该方案采用加法同态加密和矩阵混淆技术,在有效识别并预测异常交易的同时,保证交易数据的隐私性.此外,在云外包环境中设计实现方案的底层协议,并证明了方案的正确性和隐私保护性质.与同类协议相比,该方案在保证隐私性的同时,具有较高的检测准确率和召回率,平均每条记录的检测时间为毫秒级,适用于真实加密货币交易的检测场景.
An Anomaly Detection Scheme for Blockchain Transactions Based on AdaBoost Model
In response to potential anomalous behaviors,such as coin theft in the transaction records of the blockchain-based cryptocurrency,a detection scheme with privacy protection function based on the adaptive boosting(AdaBoost)model was proposed.This scheme integrated additive homomorphic encryption and matrix perturbation techniques,ensuring the preservation of transaction data privacy while effectively identifying and predicting anomalies.The scheme's underlying protocol was designed and implemented in a cloud outsourcing environment,and its correctness and privacy protection properties were proven.Compared with similar protocols,this scheme has high detection accuracy and recall while ensuring privacy.The detection time for each record was at the millisecond level,making it suitable for real cryptocurrency transaction detection scenarios.

privacy protectionmachine learninganomaly detectionhomomorphic encryption

宋玉涵、祝跃飞、魏福山

展开 >

中国人民解放军信息工程大学网络空间安全学院,郑州 450001

隐私保护 机器学习 异常检测 同态加密

国家自然科学基金国家重点研发计划河南省优秀青年基金河南省重大公益项目

617725482019QY1300222300420099201300210200

2024

信息网络安全
公安部第三研究所 中国计算机学会计算机安全专业委员会

信息网络安全

CSTPCDCHSSCD北大核心
影响因子:0.814
ISSN:1671-1122
年,卷(期):2024.(1)
  • 1