首页|面向物联网的入侵检测技术研究新进展

面向物联网的入侵检测技术研究新进展

扫码查看
相较于传统入侵检测机制,智能化的入侵检测技术能够充分提取数据特征,具有更高的检测效率,但对数据样本标签的要求也更高.文章按数据样本标签从有监督和无监督角度对物联网入侵检测技术的最新进展进行综述.首先概述了基于签名的入侵检测方法,并基于有监督和无监督的分类分析了近期基于传统机器学习的入侵检测方法;然后分析了近期基于深度学习的入侵检测方法,分别对基于有监督、无监督、生成对抗网络和深度强化学习的入侵检测方法进行分析;最后分析总结了物联网入侵检测技术的研究挑战和未来的研究趋势.
New Research Progress on Intrusion Detection Techniques for the Internet of Things
Compared to traditional intrusion detection mechanisms,the intelligent intrusion detection technology can fully extract data features,demonstrating higher detection efficiency,however,it also imposes greater demands on data sample labels.Considering data sample labels,this article provided a comprehensive review of the latest developments in the intrusion detection technology for the Internet of things(IoT)from the perspectives of supervised and unsupervised learning.Firstly,it outlined signature-based intrusion detection methods and analyzed recent traditional machine learning based intrusion detection methods based on the classification of supervised and unsupervised learning.Then,it analyzed recent deep learning based intrusion detection methods based on supervised,unsupervised,generative adversarial network,and deep reinforcement learning,respectively.Finally,it summarized the research challenges and future trends in the IoT intrusion detection technology.

Internet of thingsintrusion detectionmachine learningdeep learninggenerative adversarial network

冯光升、蒋舜鹏、胡先浪、马明宇

展开 >

哈尔滨工程大学计算机科学与技术学院,哈尔滨 150000

物联网 入侵检测 机器学习 深度学习 生成对抗网络

国家自然科学基金

62272126

2024

信息网络安全
公安部第三研究所 中国计算机学会计算机安全专业委员会

信息网络安全

CSTPCDCHSSCD北大核心
影响因子:0.814
ISSN:1671-1122
年,卷(期):2024.24(2)
  • 64