首页|基于自注意力机制的网络局域安全态势融合方法研究

基于自注意力机制的网络局域安全态势融合方法研究

扫码查看
针对传统网络安全态势感知方法无法高效整合多节点数据、获取全局网络安全态势的问题,文章提出了一种基于自注意力机制(Self-Attention Mechanism)、径向基函数(Radial Basis Function,RBF)神经网络与卷积神经网络(Convolutional Neural Network,CNN)的网络局域安全态势融合方法 SA-RBF-CNN(Self-Attention-RBF-CNN).通过自注意力机制,模型能有效识别并强调关键节点,增强对全局安全态势的认识.同时,改进的RBF结构与CNN结合能进一步提炼特征,增强模型对复杂数据模式的捕捉能力.实验结果显示,SA-RBF-CNN在识别网络安全态势预测的关键指标上优于其他类似方法,与传统态势感知方法相比,其提升了计算速度,减少了通信开销,证明该模型具有一定的实际应用价值.
Research on Network Local Security Situation Fusion Method Based on Self-Attention Mechanism
Addressing the issue of traditional network security situation awareness methods being inefficient at integrating multi-node data to obtain a global network security situation,this article proposed a network local security situation fusion method named SA-RBF-CNN,based on self-attention mechanism,radial basis function(RBF)neural network,and convolutional neural network(CNN).Through the self-attention mechanism,the model effectively identifies and emphasizes key nodes,enhancing the understanding of the global security situation.Meanwhile,the improved RBF structure combined with CNN further refines features,boosting the model's ability to capture complex data patterns.Experimental results show that SA-RBF-CNN outperforms other similar methods in key indicators of network security situation prediction.Compared to traditional situation awareness methods,it increases computational speed and reduces communication overhead,proving that the model has certain practical application value.

network security situation awarenessself-attention mechanismdeep learningradial basis function neural network

杨志鹏、刘代东、袁军翼、魏松杰

展开 >

南京理工大学网络空间安全学院,南京 210094

南京理工大学计算机科学与工程学院,南京 210094

网络安全态势感知 自注意力机制 深度学习 径向基神经网络

工信部工业互联网创新发展工程项目(2020)

TC200H01V

2024

信息网络安全
公安部第三研究所 中国计算机学会计算机安全专业委员会

信息网络安全

CSTPCDCHSSCD北大核心
影响因子:0.814
ISSN:1671-1122
年,卷(期):2024.24(3)
  • 28