首页|针对恶意软件的高鲁棒性检测模型研究

针对恶意软件的高鲁棒性检测模型研究

扫码查看
近年来,恶意软件对网络空间安全的危害日益增大,为了应对网络环境中大规模的恶意软件检测任务,研究者提出了基于机器学习、深度学习的自动化检测方法.然而,这些方法需要在特征工程上耗费较多的时间,导致检测效率较低;同时,恶意软件对抗样本的存在也影响着这些方法做出正确的判断,对网络安全造成了危害.为此,文章提出一种鲁棒性较强的恶意软件检测方法MDCAM.该方法首先基于代码可视化技术分析了不同家族恶意软件以及恶意软件对抗样本的特征,并在此基础上构建了融合改进ConvNeXt网络、混合域注意力机制与FocalLoss函数的检测模型,显著提升了检测模型的综合能力及鲁棒性.
Research on a High Robust Detection Model for Malicious Software
In recent years,malware has become increasingly harmful to the security of cyberspace.In order to cope with large-scale malware detection tasks in the network environment,researchers have proposed automatic detection methods based on machine learning and deep learning.However,these methods need to spend more time on feature engineering,resulting in low detection efficiency.At the same time,the existence of malware countersamples also affects these methods to make correct judgments,causing harm to information security.Therefore,this paper proposed a robust malware detection method(MDCAM).This method firstly analyzed the characteristics of different families of malware and malware adversarial examples based on code visualization technology,and then builded a detection model that integrated improved ConvNeXt network,mixed domain attention mechanism and FocalLoss function,which significantly improved the comprehensive ability and robustness of the detection model.

malware detectiondeep learningadversarial examples

徐茹枝、张凝、李敏、李梓轩

展开 >

华北电力大学控制与计算机工程学院,北京 102206

恶意软件检测 深度学习 对抗样本

2024

信息网络安全
公安部第三研究所 中国计算机学会计算机安全专业委员会

信息网络安全

CSTPCDCHSSCD北大核心
影响因子:0.814
ISSN:1671-1122
年,卷(期):2024.24(8)