首页|联邦学习模型所有权保护方案综述

联邦学习模型所有权保护方案综述

扫码查看
近年来,机器学习逐渐成为推动各行业发展的一种关键技术.联邦学习通过融合本地数据训练和在线梯度迭代,实现了分布式安全多方机器学习中的模型泛化能力和数据隐私保护双提升.由于联邦学习模型需要投入大量的训练成本(包括算力、数据集等),因此,对凝结了巨大经济价值的联邦学习模型进行所有权保护显得尤为重要.文章调研了现存的针对联邦学习模型的所有权保护方案,通过对两种模型指纹方案、8 种黑盒模型水印方案和 5 种白盒模型水印方案的梳理,分析联邦学习模型所有权保护的研究现状.此外,文章结合深度神经网络模型所有权保护方法,对联邦学习模型所有权保护的未来研究方向进行展望.
A Survey of Ownership Protection Schemes for Federated Learning Models
In recent years,machine learning has emerged as a key technology driving development across various industries.Federated learning has achieved enhancements in both model generalization and data privacy protection in distributed secure multi-party machine learning by integrating local data training with online gradient iteration.Due to the high training costs associated with federated learning models,including computational power and datasets,protecting the ownership of these economically valuable models has become particularly important.This article surveyed existing ownership protection schemes for federated learning models.The researchers examined two fingerprinting schemes,eight black-box watermarking schemes,and five white-box watermarking schemes to analyze the current state of research on model ownership protection.Additionally,this article combined methods for protecting the ownership of deep neural network models and provided insights into the current research directions for protecting the ownership of federated learning models.

machine learningfederated learningdeep neural networksownership protection

萨其瑞、尤玮婧、张逸飞、邱伟杨、马存庆

展开 >

中国科学院信息工程研究所,北京 100085

福建师范大学计算机与网络空间安全学院,福州 350108

机器学习 联邦学习 深度神经网络 所有权保护

国家自然科学基金

62202102

2024

信息网络安全
公安部第三研究所 中国计算机学会计算机安全专业委员会

信息网络安全

CSTPCDCHSSCD北大核心
影响因子:0.814
ISSN:1671-1122
年,卷(期):2024.24(10)