首页|基于对抗样本的流量时序特征混淆方法

基于对抗样本的流量时序特征混淆方法

扫码查看
基于深度学习的流量分析技术在提高网络管理效率的同时,也为恶意攻击者提供了新的入侵途径.攻击者可通过分析加密流量的时序特征提取用户的敏感信息,严重威胁个人隐私安全.目前的防御策略主要通过对抗样本误导对手的分类器,但现有策略在现实应用中存在明显局限.一方面,现有策略仅限于特征空间的扰动,无法对真实流量产生影响;另一方面,依赖于对攻击者模型的了解,仅在白盒环境下有效.鉴于针对黑盒环境下混淆真实流量的研究不足,文章提出一种基于对抗样本的流量时序特征混淆方法TAP.该方法无需访问对手分类器,即可针对时序特征生成有效的对抗扰动,其核心在于通过向单向通信流中插入少量分组,在不影响正常通信的前提下有效抵抗基于时序特征的流量分析.实验结果表明,文章所提方法在带宽开销不超过7%的情况下,显著降低了对手流量分类的准确率.
Traffic Obfuscation Method for Temporal Features Based on Adversarial Example
While deep learning-based traffic analysis technology improves network management efficiency,it also opens up new intrusion paths for malicious attackers. Users' sensitive information can be extracted by analyzing the temporal characteristics of encrypted traffic,thereby posing a serious threat to individual privacy and security. The current defense strategies mainly relied on adversarial example to mislead adversaries' classifiers. However,the application of these strategies encountered significant limitations in real-world scenarios. On the one hand,existing strategies confine to perturbing the feature space and are unable to impact real traffic. On the other hand,defense methods depend on understanding the attacker model,only proving effective in white-box environments. Given the insufficient research on obfuscating real traffic in black-box environments,the paper proposed a traffic obfuscation method for temporal features based on adversarial example named TAP. TAP was capable of generating effective adversarial perturbations targeting temporal features without requiring access to the adversary's classifier. The core concept of TAP involved inserting a small number of packets into unidirectional communication flows,effectively resisting traffic analysis based on temporal features without disrupting normal communication. The experimental results show that TAP significantly reduce the accuracy of adversary traffic classification methods,with a bandwidth overhead of no more than 7%.

traffic obfuscationadversarial examplegenerative adversarial networktraffic analysis

张国敏、屠智鑫、邢长友、王梓澎、张俊峰

展开 >

陆军工程大学指挥控制工程学院,南京 210007

流量混淆 对抗样本 生成对抗网络 流量分析

2024

信息网络安全
公安部第三研究所 中国计算机学会计算机安全专业委员会

信息网络安全

CSTPCDCHSSCD北大核心
影响因子:0.814
ISSN:1671-1122
年,卷(期):2024.(12)