首页|多特征融合的混合模型视频跟踪算法

多特征融合的混合模型视频跟踪算法

Hybrid Model Visual Tracking Algorithm Based on Multi-feature Fusion

扫码查看
为克服传统目标跟踪算法特征表示单一、局部结构信息利用不足等问题,提出了一种多特征融合的混合模型跟踪算法.算法首先将像素的局部外观模型和全局颜色直方图、方向梯度直方图模板进行融合,构建一种鲁棒性强的混合外观模型,然后提出一种新的离群检测策略,该策略将系数矩阵分成两个相关的部分并采用l2,1规范求解.标准测试集上的实验结果表明,本文算法在处理光照变化和遮挡等场景时具有更高的跟踪精度和鲁棒性.
In order to overcome the disadvantages of just adopting single feature and lacking of local structure information in traditional tracking algorithms,a hybrid model visual tracking algorithm based on multi-feature fusion is proposed. Firstly,it structures a robust appearance model via integrating the local appearance model of intensity together with the global templates of color histograms and histogram of oriented gradient ( HOG) . Then,a strategy of outlier rejection is also proposed,which divides the sparse coefficient into two collaborative components and imposes the l2,1 mixed-norm regularization. The experimental results on benchmark dataset show that the proposed method is more accurate and robust in dealing with illumination change and occlusion.

object trackingfeature integrationappearance modeloutlier rejection

王琳、陈志国、孙俊

展开 >

江南大学 物联网工程学院,江苏 无锡214122

目标跟踪 特征融合 外观模型 离群检测

国家自然科学基金国家自然科学基金江苏省自然科学基金项目

6150220361300149BK20150122

2017

小型微型计算机系统
中国科学院沈阳计算技术研究所

小型微型计算机系统

CSTPCDCSCD北大核心
影响因子:0.564
ISSN:1000-1220
年,卷(期):2017.38(12)
  • 1
  • 4