首页|用于调节参数区间选择的交叉验证方法

用于调节参数区间选择的交叉验证方法

扫码查看
现有的交叉验证方法在选择模型的调节参数时,一般在给定的参数值中选出一个最优的调节参数,而为了应对数值的复杂性和提高选择便利性,现实应用中往往更希望选出一个参数区间,也利于观察算法的稳定性.针对这个问题,本文改进了块正则化mx2交叉验证方法,提出了一个新的模型调节参数区间选择方法,基本思想是给出多个调节参数区间,采用增量的方式,不断地增加m,进而不断地减少调节参数区间个数,最终选出一个最优的调节参数区间,在这个最优区间中任意选取调节参数,都可以作为模型的调节参数.通过大量实验,与基于交叉验证的模型调节参数选择方法(m×2交叉验证方法、2折、5折、10折交叉验证)做了对比,模型在选出的区间上的平均准确度与最优单个参数的准确度相差不大,而且在该区间上最高准确度和最低准确度的差值非常小,说明在该区间上选择参数作为调节参数性能相对稳定.
Cross-validation Method for Tuning Parameter Interval Selection
The existing cross-validation methods generally select an optimal tuning parameter from the given parameter value when se-lecting the tuning parameters of the model,and in order to cope with the complexity of the values and improve the convenience of se-lection,it is often preferred to select a parameter interval in practical applications,which is also conducive to observing the stability of the algorithm.To solve this problem,this paper improves the block-regularized m x 2cross-validation method,and proposes a new model adjustment parameter interval selection method,the basic idea is to give multiple tuning parameter intervals,using incremental methods,constantly increasing m,and then continuously reducing the number of tuning parameter intervals.Finally,an optimal tuning parameter interval is selected,and any tuning parameters are selected in this optimal interval,which can be used as the tuning parame-ters of the model.Through a large number of experiments,compared with tuning parameter selection methods based on cross-validation model(block-regularized m x2cross-validation method,2-fold,5-fold,10-fold cross-validation),the average accuracy of the model in the selected interval is not much different from the accuracy of the optimal single parameter,and the difference between the highest ac-curacy and the lowest accuracy in the interval is very small,indicating that the performance of selecting parameters as tuning parame-ters in this interval is relatively stable.

cross-validationmodel selectiontuning parameter selectionoptimal intervalsupport vector machines

宁保斌、王士同

展开 >

江南大学人工智能与计算机学院,江苏无锡 214122

交叉验证 模型选择 调节参数选择 区间最优 支持向量机

2025

小型微型计算机系统
中国科学院沈阳计算技术研究所

小型微型计算机系统

北大核心
影响因子:0.564
ISSN:1000-1220
年,卷(期):2025.46(1)